Pon Integration and Development
Guidelines

POM

Document source files: Github

Other formats: PDF

Table of Contents

Pon Integration and Development Guidelines
1. Introduction
1.1. Software engineering
1.1.1. Software requirements
1.1.2. Software architecture and design
1.1.3. Software development
1.1.4. Software testing
1.1.5. Software maintenance and support
1.2. Document management
1.3. Attribution
1.4. Conventions used in these guidelines
1.5. Pon specific information
1.5.1. Automated code style checking (linting)
1.5.2. Guideline or standard
1.5.3. MUST comply with standards and guidelines
1.5.4. (RFP) MUST write all resources using U.S. English
2. Generic
2.1. Guilds
2.1.1. Communication
2.1.1.1. Ad-hoc
2.1.1.2. New rules updates
2.2. Monitoring

10
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
13
14
14
14

https://github.com/PonDigitalSolutions/restful-api-guidelines
pon-guidelines.pdf

2.2.1. (RFP) MUST have predefined monitoring based KPIs
2.2.2. (RFP) MUST be able monitor operational state using automated tools
2.2.3. (RFP) SHOULD be able to report detailed relevant operational states
2.3. Quality
2.3.1. (RFP) SHOULD have seperate environments for development, testing, acceptance
and production
2.3.1.1. Development
2.3.1.2. Testing
2.3.1.3. Acceptance
2.3.1.4. Production
2.3.2. Code Quality
2.3.2.1. (RFP) MUST have code duplication checks
2.3.2.2. (RFP) MUST have vulnerability checks
2.3.3. GUI and websites quality
2.3.3.1. (RFP) SHOULD have predefined tests
2.3.4. API quality
2.3.4.1. (RFP) MUST have predefined tests
2.3.4.2. (RFP) MUST have a pre-defined code-coverage percentage
2.4. Security
2.4.1. (RFP) MUST be compliant with the Pon Security Policy and Principles
2.4.2. (RFP) MUST be compliant with Binding Corporate Rules and local privacy legislation
2.4.3. (RFP) MUST have performed a Security & Privacy intake
2.4.4. (RFP) MUST have the agreed security and privacy measures approved
2.5. Privacy
2.6. Documentation
2.6.1. MUST include documentation comment saying what the tool is for
2.6.2. MUST include monitoring documentation
2.6.2.1. References
2.6.3. MUST document deployment procedures
2.7. Onboarding
2.7.1. (RFP) MUST include guidelines in onboarding procedure
2.7.2. (RFP) SHOULD have pre-defined development environment(s)
2.7.2.1. Patron(s) 0
2.7.3. Solution architecture repository
2.8. Intellectual property (IP)
2.8.1. (RFP) MUST include project wide license file
2.8.2. (RFP) MUST include copyright notice in each source file
2.9. Checklist
3. Integration guidelines
3.1. Principles
3.1.1. API design principles

14
14
14
14

14
14
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
18
18
18
18
18
19
19
19

3.1.2. API as a product
3.1.3. API first
3.2. Solution design
3.2.1. Microservices
3.2.2. Connectivity
3.2.2.1. (RFP) MUST have self-healing connectivity
3.2.2.2. (RFP) SHOULD have increasing reconnection intervals
3.2.3. Loosely coupled
3.2.4. Security
3.2.5. Monitoring
3.2.5.1. (RFP) MUST setup monitoring and alerting connections
3.2.6. Documentation
3.2.7. Security
3.3. Generic
3.3.1. Pagination
3.3.1.1. MUST support pagination

3.3.1.2. SHOULD prefer cursor-based pagination, avoid offset-based pagination

3.3.1.3. SHOULD use pagination links where applicable
3.4. Types
3.4.1. FTP
3.4.1.1. Monitoring
3.4.1.2. Documentation
3.4.1.3. Security
3.5. General guidelines
3.5.1. (RFP) MUST follow API first principle
3.5.2. (RFP) MUST provide API specification
3.5.3. (RFP) MUST only use durable and immutable remote references
3.5.4. (RFP) MAY provide API user manual
3.6. Meta information
3.6.1. (RFP) SHOULD contain API meta information
3.6.2. (RFP) MAY use semantic versioning
3.6.3. (RFP) MAY provide API identifiers
3.6.4. (RFP) SHOULD provide API audience
3.7. Security
3.7.1. (RFP) MUST secure endpoints
3.7.1.1. References
3.7.2. (RFP) SHOULD define and assign permissions (scopes)
3.7.3. (RFP) MAY follow naming convention for permissions (scopes)
3.8. Compatibility
3.8.1. (RFP) MUST not break backward compatibility
3.8.2. (RFP) SHOULD prefer compatible extensions

19
20
21
21
21
21
21
21
21
21
21
22
22
22
22
22
22
24
25
25
25
25
25
25
25
25
25
26
26
26
26
27
28
29
29
29
30
31
31
31
32

3.8.3. (RFP) MUST prepare clients accept compatible API extensions
3.8.4. (RFP) SHOULD design APIs conservatively

3.8.5. (RFP) MUST always return JSON objects as top-level data structures if JSON is being

used

3.8.6. (RFP) SHOULD refrain from using enumerations

3.8.7. (RFP) SHOULD avoid versioning

3.8.8. {STATUS-TODO} MUST API Versioning Has No “Right Way”
3.8.9. (RFP) SHOULD use URI versioning

3.9. Deprecation

3.9.1. (RFP) MUST obtain approval of clients before API shut down

3.9.2. (RFP) MUST collect external partner consent on deprecation time span
3.9.3. (RFP) MUST reflect deprecation in API specifications

3.9.4. (RFP) MUST monitor usage of deprecated API scheduled for sunset
3.9.5. (RFP) SHOULD add Deprecation and Sunset header to responses

3.9.6. (RFP) SHOULD add monitoring for Deprecation and Sunset header
3.9.7. (RFP) MUST not start using deprecated APIs

3.10. Common data types

3.10.1. (RFP) MUST use the common money object
3.10.1.1. Cons
3.10.1.2. Pros
3.10.1.3. Notes
3.10.2. (RFP) MUST use common field names and semantics
3.10.2.1. Generic fields
3.10.2.2. Link relation fields
3.10.2.3. Address fields

3.11. API naming

3.11.1. MUST/SHOULD use functional naming schema

3.11.2. MUST follow naming convention for hostnames

3.11.3. MUST use lowercase separate words with hyphens for path segments
3.11.4. MUST use snake_case (never camelCase) for query parameters
3.11.5. SHOULD prefer hyphenated-pascal-case for HTTP header fields
3.11.6. MUST pluralize resource names

3.11.7. SHOULD not use /api as base path

3.11.8. MUST avoid trailing slashes

3.11.9. MUST stick to conventional query parameters

3.12. Resources

3.12.1. MUST avoid actions — think about resources
3.12.2. SHOULD model complete business processes
3.12.3. SHOULD define useful resources

3.12.4. MUST keep URLs verb-free

3.12.5. MUST use domain-specific resource names

32
33

34
34
34
35
35
35
35
35
35
36
36
36
37
37
37
38
38
38
39
39
40
41
43
43
44
44
45
45
45
45
45
45
46
46
46
47
47
47

3.12.6. MUST use URL-friendly resource identifiers

3.12.7. MUST identify resources and sub-resources via path segments
3.12.8. MAY expose compound keys as resource identifiers

3.12.9. MAY consider using (non-)nested URLs

3.12.10. SHOULD only use UUIDs if necessary

3.12.11. SHOULD limit number of resource types

3.12.12. SHOULD limit number of sub-resource levels

3.13. Performance

3.13.1. SHOULD reduce bandwidth needs and improve responsiveness
3.13.2. SHOULD use gzip compression
3.13.3. SHOULD support partial responses via filtering
3.13.3.1. Unfiltered
3.13.3.2. Filtered
3.13.4. SHOULD allow optional embedding of sub-resources
3.13.5. MUST document cachable GET, HEAD, and POST endpoints

3.14. Hypermedia

3.14.1. MUST use REST maturity level 2

3.14.2. MAY use REST maturity level 3 - HATEOAS

3.14.3. MUST use full, absolute URI

3.14.4. MUST use common hypertext controls

3.14.5. SHOULD use simple hypertext controls for pagination and self-references
3.14.6. MUST not use link headers with JSON entities

3.15. Common headers

3.15.1. MUST use Content-* headers correctly

3.15.2. MAY use standardized headers

3.15.3. MAY use Content-Location header

3.15.4. SHOULD use Location header instead of Content-Location header

3.15.5. MAY consider to support Prefer header to handle processing preferences
3.15.6. MAY consider to support ETag together with If-Match/If-None-Match header
3.15.7. MAY consider to support Idempotency-Key header

3.16. Proprietary headers

3.16.1. MUST use only the specified proprietary Pon headers
3.16.2. MUST propagate proprietary headers
3.16.3. MUST support X-Flow-ID

3.16.3.1. Data Definition

3.16.3.2. Service Guidance

3.17. API Operation

3.17.1. MUST publish Open API specification
3.17.2. SHOULD monitor API usage

3.18. Events

3.18.1. Events, event types, and categories

47
47
48
49
49
50
51
51
51
51
52
52
52
53
54
56
56
56
57
57
58
58
59
59
59
59
60
60
61
62
63
64
65
65
66
66
67
67
67
67
67

3.18.2. MUST treat events as part of the service interface

3.18.3. MUST make event schema available for review

3.18.4. MUST ensure event schema conforms to Open API schema object

3.18.5. MUST ensure that events are registered as event types

3.18.6. MUST ensure that events conform to a well-known event category

3.18.6.1. The general event category

3.18.6.2. The data change event category
3.18.6.3. Event metadata

3.18.7. MUST ensure that events define useful business resources

3.18.8. MUST ensure that events do not provide sensitive data

3.18.9. MUST use the general event category to signal steps and arrival points in business

processes

3.18.10.
3.18.11.
3.18.12.
3.18.13.
3.18.14.
3.18.15.
3.18.16.
3.18.17.
3.18.18.
3.18.19.
3.18.20.
3.18.21.

MUST use data change events to signal mutations

SHOULD provide means for explicit event ordering

SHOULD use the hash partition strategy for data change events
SHOULD ensure that data change events match the APIs resources
MUST indicate ownership of event types

MUST define event payloads compliant with overall API guidelines
MUST maintain backwards compatibility for events

SHOULD avoid additionalProperties in event type definitions
MUST use unique event identifiers

SHOULD design for idempotent out-of-order processing

MUST follow naming convention for event type names

MUST prepare event consumers for duplicate events

Appendix A: Tooling
3.A.1. API first integrations

3.A.2. Support libraries

Appendix B: Best practices
3.B.1. Optimistic locking in RESTful APIs
3.B.1.1. Introduction
3.B.1.2. ETag with If-Match header

3.B.1.3. ETags in result entities

3.B.1.4. Version numbers
3.B.1.5. Last-Modified / If-Unmodified-Since

3.B.1.6. Conclusion

4. Development guidelines

4.1. General development guidelines

4.1.1. Introduction

4.1.2. Rules and definitions

4.1.3. Definition: code quality

4.1.4. Coding rule: logical structured code

68
68
68
69
73
73
74
75
77
77

77
78
78
78
79
79
80
80
81
81
82
82
83
83
83
83
83
83
83
84
85
85
86
87
87
87
88
88
88
89

4.1.5. Coding rule: code is simple and concise
4.1.6. Coding rule: do not repeat yourself (DRY)
4.1.7. Coding rule: code and code changes are self-explanatory
4.1.8. Coding rule: solution design steps are template-based
4.1.9. Coding rule: code quality is known
4.1.10. Coding rule: cyclomatic complexity is low
4.2. File structure and naming
4.2.1. (RFP) MUST add comment to file
4.2.2. (RFP) MUST filenames are either CamelCase or snake_case
4.3. Version control
4.3.1. MUST use enterprise account
4.3.2. MUST use review guidelines for version control
4.3.2.1. Review guidelines
4.4. Testing code
4.4.1. MUST use automated linter based on approved style template
4.4.2. MUST use automated tests based on approved testing template
4.5. Monitoring & logging
4.5.1. SHOULD use dedicated logging library and logging levels
4.6. Development environment
4.7. Development background
4.8. Date and time handling
4.8.1. (RFP) MUST use RFC 3339 for time and date encoding
4.8.2. (RFP) MUST date time manipulation must be handled by a library
4.8.3. SHOULD define time durations and intervals properties conform to RFC 3339
Appendix C: Pon Standard Style
4.C.1. MUST encapsulate body of if or else
4.C.1.1. Example 1
4.C.2. SHOULD order if statements by increased complexity
4.C.2.1. Example 1
4.C.3. MUST use special quotes only to reduce complexity
4.C.3.1. Example 1
4.C.3.2. Example 2
4.C.3.3. References
4.C.4. SHOULD never use tabs for indentation
4.C.4.1. References
4.C.5. MUST use predefined spacing for indentation
4.C.5.1. References
4.C.6. SHOULD check return types of non-void functions
4.C.7. References
4.C.8. SHOULD check the validity of parameters inside each function
4.C.8.1. Example 1

89
90
91
91
91
91
92
92
92
92
92
92
93
93
93
93
93
93
93
94
94
94
94
94
94
94
95
95
95
96
96
96
96
96
97
97
97
97
97
97
97

4.C.8.2. References
4.C.9. MUST not have unused variables
4.C.9.1. References
4.C.10. SHOULD use < or > instead of <= or >=
4.C.11. SHOULD use != instead of > or < when only a single value results in false
4.C.11.1. Example 1
Appendix D: Pon Standard Style - Go
4.D.1. MUST for linting we use golangci-lint in our CI/CD system
4.D.1.1. Example linter implementation in Git Actions
4.D.2. SHOULD go Vet is used to check go code for correctness in the development process
4.D.3. MUST go Vet is used to check go code for correctness in the build pipeline
4.D.4. MUST use tabs for indentation in Go
4.D.5. MUST use gofmt in the IDE and CI pipeline for automatic formatting
4.D.6. {SHALL} every function is commented
4.D.7. MUST single line multiple declarations are not used
4.D.7.1. Example 1 Invalid declaration
4.D.7.2. Example 2 Valid declaration
4.D.8. MUST global variables are not used
4.D.8.1. Exception
4.D.9. MUST variables and constants have explicitly declared types
4.D.9.1. Invalid declaration
4.D.9.2. Valid declaration
4.D.10. SHOULD use unitialized variables to check for zero-values
4.D.10.1. Avoid
4.D.10.2. Desired check
4.D.11. MUST we do not try and catch exceptions. Errors are values and we handle errors
4.D.12. MUST errors are handle only once.
4.D.12.1. Don’t do
4.D.12.2. Better
4.D.12.3. We can also include the stacktrace in the logging
4.D.13. SHOULD add context to errors when they are meaningless in the context of the
(final) receiver.
4.D.13.1. Passing through context of the error with fmt.Errorf()
4.D.13.2. Better — Passing through context of the error with errors.Wrap() from the
"github.com/pkg/errors" package
4.D.14. {SHALL} Documenting comments are always written in the idiomatic syntax.
4.D.14.1. Example multi line comments
4.D.14.2. Do not use stars or other formatting in comments
Appendix E: Pon Standard Style - Magento
Appendix F: Pon Standard Style - WordPress
5. Networking

98
98
98
98
98
98
99
99
99
99
100
100
100
100
100
100
100
100
100
101
101
101
101
101
101
102
102
102
102
103

103
103

104
104
104
105
105
105
106

5.1. HTTP requests 106

5.1.1. MUST use HTTP methods correctly 106
5.1.1.1. GET 106
5.1.1.2. GET with body 106
5.1.1.3. PUT 107
5.1.1.4. POST 107
5.1.1.5. PATCH 108
5.1.1.6. DELETE 109
5.1.1.7. HEAD 109
5.1.1.8. OPTIONS 109

5.1.2. MUST fulfill common method properties 109

5.1.3. SHOULD consider to design POST and PATCH idempotent 110

5.1.4. SHOULD use secondary key for idempotent POST design 111

5.1.5. MUST define collection format of header and query parameters 112

5.1.6. SHOULD design simple query languages using query parameters 112

5.1.7. SHOULD design complex query languages using JSON 113
5.1.7.1. Example 113

5.1.8. MUST document implicit filtering 114

5.2. HTTP status codes and errors 115

5.2.1. MUST specify success and error responses 115

5.2.2. MUST use standard HTTP status codes 116
5.2.2.1. Success codes 116
5.2.2.2. Redirection codes 116
5.2.2.3. Client side error codes 117
5.2.2.4. Server side error codes: 117

5.2.3. MUST use most specific HTTP status codes 118

5.2.4. MUST use code 207 for batch or bulk requests 118

5.2.5. MUST use code 429 with headers for rate limits 119

5.2.6. MUST use problem JSON 120

5.2.7. MUST not expose stack traces 121

6. Data formats 121
6.1. Data formats 121

6.1.1. MUST use JSON to encode structured data 121

6.1.2. MAY use non JSON media types for binary data or alternative content

representations 121
6.1.2.1. SHOULD encode embedded binary data in base64url 122

6.1.3. SHOULD prefer standard media type name application/json 122

6.1.4. SHOULD use standardized property formats 122

6.1.5. MUST use standard date and time formats 123
6.1.5.1. JSON payload 123
6.1.5.2. HTTP headers 123

6.1.6. SHOULD use standards for country, language and currency codes 123

6.1.7. MUST define format for number and integer types 123
6.2. JSON guidelines 124
6.2.1. MUST property names must be ASCII snake_case (and never camelCase): M[a-z_][a-
z_0-971*¢ 124
6.2.2. MUST declare enum values using UPPER_SNAKE_CASE format 125
6.2.3. SHOULD define maps using additionalProperties 125
6.2.4. SHOULD pluralize array names 126
6.2.5. MUST not use null for boolean properties 126
6.2.6. MUST use same semantics for null and absent properties 126
6.2.7. SHOULD not use null for empty arrays 127
6.2.8. SHOULD represent enumerations as strings 127
6.2.9. SHOULD name date/time properties with _at suffix 127
6.2.10. SHOULD define dates properties compliant with RFC 3339 127
7. Appendices 128
Appendix G: Changelog 128
7.G.1. Rule Changes 128
7.1. Bibliography 128
Generic 128
Coding standards 128
Open API specification 129
Publications, specifications and standards 129
Dissertations 129
Books 129

1. Introduction

Progress is made by lazy persons looking for more efficient ways to do
things.

— paraphrased; Robert A. Heinlein

Software and software ecosystems are resolutions for business challenges, which in effect will
result in a firm reliance of the business on the software and corresponding integrations. Moreover,
our entrepreneurial mindset will drive updates, changes, and additions to the software; software is
rarely "done" or "finished."

The business challenges and corresponding software updates are where these guidelines come in.
To a certain degree, how can we guide the software development to ensure the software is stable,
does what it should do, is secure, and is updateable with reasonable effort.

These guidelines and standards do not prescribe the "perfect" way to build software and software
integrations since there is no "perfect” way. However, the consistency and structure of the code and

10

integrations are specified. Summarized: solve the same problem with the same solution.

This document will enable the business to make informed decisions about software development:
quantify the software’s quality and robustness in an automated, consistent manner; be aware of the
quality and robustness and decide upon the required level.

Moreover, this document contains several standards regarding intellectual property (IP) and
security. To assure correct undisputed ownership of the software and maintain a security baseline.

In the following chapters, software refers both to software and software integrations.

1.1. Software engineering

In the mid-1960s, the field of software engineering emerged; building software is about more than
just writing instructions for a computer. For the business to be able to use the software, these
guidelines address the following points [Wikipedia]:

» Software requirements

* Software architecture and design

» Software development

» Software testing

* Software maintenance

1.1.1. Software requirements

Establish the needs of the business to be resolved by software. This involves gathering the
requirements and specifying the goals of the software to be met [Wikipedia].

Next to the business requirements, this document contains the minimal standards for software,
including software license and source code management.

If you want to build an application, don’t herd people together to build code
and don’t assign them tasks and work, but rather teach them to long for the
endless joy of happy, efficient users.

— paraphrased; Antoine de Saint-Exupery

1.1.2. Software architecture and design

Architecture and design are where the Art of Building Software comes in; the architecture and
design are the foundation of the software. This document will guide towards selecting the
architecture and creating the design. There are some specific don’ts and do’s; however, it is up to
the architect to create the optimal design by considering all business requirements [Wikipedia].

1.1.3. Software development

How much effort is required for another developer of comparable experience to pick up where the

11

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_requirements
https://en.wikipedia.org/wiki/Software_design

previous developer left off to fix, enhance or build upon the source code - without involving the
former developer and considering the lifetime, quality, security, and the business impact of the
application.

1.1.4. Software testing

The proof of the pudding is in the eating; a good cook will sample the dish before serving the guests.
The software builds upon requirements, and it is up to the software engineers to indicate the
proven level of adherence to these requirements, preferably in an automated manner. It is up to
the business to decide on the level of awareness regarding the software quality based on testing.

1.1.5. Software maintenance and support

When deploying the latest version of the software, there are two continuously ongoing tasks.
Firstly: bug fixing, updates, and new features; require the software to be flexible, adaptable, and
logically structured. Note there is an overlap with software development: clean quality code will
require a lower effort to adjust or fix instead of ill-structured low-quality code.

Secondly: the software’s level of availability and performance; requires the software to be
monitorable and report its well-being. There is overlap with software testing: checking if the
software is adhering to requirements can also be reused in the live environment to check if the
software is operational and responding within a predefined timeframe.

1.2. Document management

This document is managed using Git. Git allows for controlled change approval, versioning, and
tracking of updates and changes. Moreover, it is an open system allowing for community change
suggestions.

1.3. Attribution

These guidelines are based on the Zalando restful API guidelines.

1.4. Conventions used in these guidelines

The requirement level keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" used in this document
(case insensitive) are to be interpreted as described in RFC 2119.

o Standards
MUST is by default a standard and not a guideline.

1.5. Pon specific information

These guidelines apply to all software owned by Pon, built by Pon, or made for Pon, specifically,
where Pon owns the IP. Note that this excludes SaaS solutions.

12

https://github.com/zalando/restful-api-guidelines
https://www.ietf.org/rfc/rfc2119.txt

The purpose of these guidelines is to define standards to successfully establish "consistent
integration and development look and feel" quality. The integration and development guilds draft
and own this document. Teams are responsible for fulfilling these guidelines during development
and are encouraged to contribute to guideline evolution via pull requests.

These guidelines will, to some extent, remain a work in progress as our profession evolves, but
teams can confidently follow and trust them.

In case guidelines are changing, the following rules apply:

* existing software and software integrations don’t have to be changed, but we recommend it
* clients of existing APIs have to cope with these APIs based on outdated rules

* new APIs have to respect the current guidelines

Furthermore, you should keep in mind that once an API becomes publicly available, it has to be re-
reviewed and changed according to current guidelines for overall consistency.

1.5.1. Automated code style checking (linting)

Digital Solutions will provide a preferred code style configuration per language or application that
is retrievable from this document’s repository.

Code styles are approved and maintained by the software development guild.

1.5.2. Guideline or standard

An additional "S" to the rule number and green left margin indicates a Pon standard.

1.5.3. MUST comply with standards and guidelines

Contracts relating to software development must indicate that the signing party has knowledge of
the guidelines and agrees to comply with the standards as shown in this document.

1.5.4. (RFP) MUST write all resources using U.S. English

All resources, APIs, documentation, comments, etc., must be written in the U.S. English language.

2. Generic

2.1. Guilds

This section descibes the Guilds structure and the way of working.

2.1.1. Communication

This section describes the guilds WOW regarding communication

13

2.1.1.1. Ad-hoc

Go / no-go

2.1.1.2. New rules updates

How to handle rule updates and adding new rules.

2.2. Monitoring

Monitoring of systems is based on KPIs set by the business

2.2.1. (RFP) MUST have predefined monitoring based KPIs

All systems must have predifined KPIs on which the monitoring is to be based. These KPIs are the
foundation for the monitoring of the infrastructure components.

For example: a website should have KPIs indicating response time and uptime. A low response time
will require a fast scaling infrastructure and monitoring will have to be setup accordingly. A high
uptime will require fast responding infrastructure monitoring.

2.2.2. (RFP) MUST be able monitor operational state using automated tools

All systems must have capabilities to allow itself to be monitored in an automated way and respond
unambigous about the current operational state.

2.2.3. (RFP) SHOULD be able to report detailed relevant operational states

All systems should be able to report its operational state with enough detail for operational and
support teams to take preventive measures. Basic reporting of "up" and "down" is not sufficient.

For example: system response time should be reported in milliseconds instead of "oke" and "not
oke", allowing the business to set guidelines for the operational teams when to respond and take
measures before the response time degrades to a level it will impact the effectiveness of its users.

2.3. Quality

2.3.1. (RFP) SHOULD have seperate environments for development, testing,
acceptance and production

In order to maintain software or integration quality the setup of an DTAP environment is preferred.
This setup allows for an atomized way of working on features and bug fixes. These environments
should be available before starting development.

This environment consists of four parts:

2.3.1.1. Development

The development environment is used for the actual development or for example bug fixing.

14

2.3.1.2. Testing

The testing environment is the first step for quality assurance, in this environment the automated
or manual tests are done to confirm new functionalities or bug fixes. Note there can be several
testing environments, eg: an environment for the testing of an operational bug and an environment
for the testing of a new feature.

2.3.1.3. Acceptance

The acceptance environment is the second step for quality assurance, this environment allows for
the customer to confirm new functionalities or bug fixes. In this environment several updates can
be combined to prepare for a deployment to the production systems.

This environment allows for the customer to sign of on the development.

2.3.1.4. Production

The primary environment for production. This environment can only be updated after a signoff of
which the requirements are specified beforehand.

2.3.2. Code Quality

The quality of the code should be known, but we diffrentiate between frontends and api’s. GUI are
more difficult to test, because you’ll need to automate the click flow through the frontend/GUI and
therefor more labour intensive to maintain.

All tests and checks should be configured in the pipeline so the developer receives instant feedback
of the commit.

2.3.2.1. (RFP) MUST have code duplication checks

A software project must have something in place to detect duplicated code.

2.3.2.2. (RFP) MUST have vulnerability checks

When running in the pipeline a vulnerability check must happen, so compromised libraries are not
taken into production (because the pipeline is blocked).

2.3.3. GUI and websites quality

2.3.3.1. (RFP) SHOULD have predefined tests

A GUI project should have some tests defined, for example; a webshop should be able to have an
item in the cart and finalize the checkout.

2.3.4. API quality

API’s need to have a certain quality level which can be observed.

15

2.3.4.1. (RFP) MUST have predefined tests

An API must have Unit / feature / e2e tests available. This tells something about how well you can
trust what to expect from your code.

2.3.4.2. (RFP) MUST have a pre-defined code-coverage percentage

An API must have a pre-defined level of code-coverage. This tells something about how well the
code is tested and if all code paths have been checked.

2.4. Security
This section descibes the generic guidelines for security.

Security and Privacy within Pon is being managed by the Pon Security & Privacy Office. All Pon
Business Clusters have a dedicated Group Security and Privacy Manager.

Additional resources
* Pon Security & Privacy by Design Process - Step by Step
* Data classification and corresponding security measures
2.4.1. (RFP) MUST be compliant with the Pon Security Policy and Principles

All systems must be compliant with the Pon Security Policy and Principles

2.4.2. (RFP) MUST be compliant with Binding Corporate Rules and local
privacy legislation

All systems must be compliant with Binding Corportate Rules and local privacy legislation such as
GDPR or CCPA.

2.4.3. (RFP) MUST have performed a Security & Privacy intake

Must have performed a Security & Privacy intake. When the requirements for the new system are
clear, the Pon Security & Privacy by Design Process must be triggered via completing the Security &
Privacy by Design Intake Form. The intake process is there to help you create APIs that are secure
and privacy compliant and friendly. Your Group Security and Privacy manager will contact you to
discuss the intake.

2.4.4. (RFP) MUST have the agreed security and privacy measures approved

Must have the agreed security and privacy measures approved by Security and/or Privacy Manager
before going live

2.5. Privacy

This section descibes the generic guidelines for privacy.

16

https://securityprivacy.pon.com/services/our-team/
https://securityprivacy.pon.com/pon-data/uploads/2021/02/Pon-Privacy-by-Design-policy.pdf
https://drive.google.com/drive/folders/1319i3ttsMzCbGk18u0D5ptkpCeacXYOG
https://ponintranet.com/en/about-pon/security-privacy/pon-security-policy/
https://www.youtube.com/watch?v=Dx4mlAuFp9Q&feature=youtu.be
https://securityprivacy.pon.com/sp-intake/
https://securityprivacy.pon.com/sp-intake/

2.6. Documentation

This section descibes the generic guidelines for documentation.

2.6.1. MUST include documentation comment saying what the tool is for

Every tool, program or integration must include a comment, either in a file or in the source briefly
indicating the purpose.

If the comment is included in the source, it is preferred to be included in the file containing the
main function

2.6.2. MUST include monitoring documentation

Every tool, program or integration must include a comment, either in a file or in the source
inidicating how the software operational state can be checked or monitored by automated systems.

2.6.2.1. References

* [gnu-coding-standards], Chapter 5.2

2.6.3. MUST document deployment procedures

Deployment of the tool, program or integration must be documented. This documentation describes
the deployment procedures and required resources. Enabling an engineer to deploy without any
support from the developers.

2.7. Onboarding

Onboarding of new developers for Pon or onboarding for new developers in a project.

2.7.1. (RFP) MUST include guidelines in onboarding procedure

The onboarding procedure for new developers must include familiarization with these guidelines.

2.7.2. (RFP) SHOULD have pre-defined development environment(s)

There should be pre-defined development environments, including OS and IDE. These
environments will ensure a smooth onboarding and will make teams of developers more efficient.

2.7.2.1. Patron(s) O

» Zeger Knops (zeger.knops@pon.com) = Solution architecture

Pon’s software architecture centers around decoupled microservices that provide functionality via
APIs. Small engineering teams own, deploy and operate these microservices. Our APIs most purely
express what our systems do, and are therefore highly valuable business assets.

With this in mind, we’ve adopted "API First" as one of our key engineerings principles.

17

mailto:zeger.knops@pon.com

Microservices development begins with an API definition outside the code and ideally involves
ample peer-review feedback to achieve high-quality APIs. API First encompasses a set of quality-
related standards and fosters a peer-review culture, including a lightweight review procedure. We
encourage our teams to follow them to ensure that our APIs:

* are easy to understand and learn

 are general and abstracted from specific implementation and use cases
 are robust and easy to use

* have a common look and feel

« follow a consistent RESTful style and syntax

* are consistent with other teams’ APIs and our global architecture

Ideally, all Pon APIs will look like the same author created them.

2.7.3. Solution architecture repository

The Pon guilds supply a repository of approved tools, techniques and frameworks both to inspire
and guide teams. It is essential this repository is consulted when designing a solution architecture.

2.8. Intellectual property (IP)

2.8.1. (RFP) MUST include project wide license file
The source code of each project must include a Pon approved license file.

[** * Copyright © Pon Holding - All Rights Reserved */

2.8.2. (RFP) MUST include copyright notice in each source file

All applicable source files must contain a Pon approved copyright notice at the start of the file and a
reference to the project license file.

Example:

[*** Copyright © Pon Holding - All Rights Reserved * Unauthorized copying of this file, via any
medium is strictly prohibited * Proprietary and confidential * * This file is subject to the
terms and conditions defined in * file 'LICENSE.txt', which is part of this source code package.
** Written by Pon Employee <pon.employee@pon.com>, September 2020 */

2.9. Checklist

* License files checked and added to project (RFP) MUST include project wide license file?
» All resources in U.S. English (RFP) MUST write all resources using U.S. English?
* Documentation available for both code and deployment?

» Security guidelines and standards checked?

18

mailto:pon.employee@pon.com

* Monitoring documented, KPIs discussed and setup with ops team?

* Quality assurance automated and results readily available?

3. Integration guidelines

3.1. Principles

3.1.1. API design principles

Comparing SOA web service interfacing style of SOAP vs. REST, the former tend to be centered
around operations that are usually use-case specific and specialized. In contrast, REST is centered
around business (data) entities exposed as resources that are identified via URIs and can be
manipulated via standardized CRUD-like methods using different representations, and hypermedia.
RESTful APIs tend to be less use-case specific and comes with less rigid client / server coupling and
are more suitable for an ecosystem of (core) services providing a platform of APIs to build diverse
new business services. We apply the RESTful web service principles to all kind of application
(micro-) service components, independently from whether they provide functionality via the
internet or intranet.

* We prefer REST-based APIs with JSON payloads

* We prefer systems to be truly RESTful "

An important principle for API design and usage is Postel’s Law, aka The Robustness Principle (see
also RFC 1122):

* Be liberal in what you accept, be conservative in what you send
Readings: Some interesting reads on the RESTful API design style and service architecture:

* Book: Irresistable APIs: Designing web APIs that developers will love

Book: REST in Practice: Hypermedia and Systems Architecture

Book: Build APIs You Won’t Hate
* InfoQ eBook: Web APIs: From Start to Finish

* Lessons-learned blog: Thoughts on RESTful API Design

Fielding Dissertation: Architectural Styles and the Design of Network-Based Software
Architectures

3.1.2. API as a product

The design of our APIs should be based on the API as a Product principle:

» Treat your API as product and act like a product owner
» Put yourself into the place of your customers; be an advocate for their needs

* Emphasize simplicity, comprehensibility, and usability of APIs to make them irresistible for

19

http://en.wikipedia.org/wiki/Robustness_principle
https://tools.ietf.org/html/rfc1122
https://www.amazon.de/Irresistible-APIs-Designing-that-developers/dp/1617292559
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.infoq.com/minibooks/emag-web-api
http://restful-api-design.readthedocs.org/en/latest/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

client engineers
* Actively improve and maintain API consistency over the long term
* Make use of customer feedback and provide service level support
Embracing 'API as a Product' facilitates a service ecosystem which can be evolved more easily, and
used to experiment quickly with new business ideas by recombining core capabilities. It makes the
difference between agile, innovative product service business built on a platform of APIs and

ordinary enterprise integration business where APIs are provided as "appendix" of existing
products to support system integration and optimised for local server-side realization.

Understand the concrete use cases of your customers and carefully check the trade-offs of your API
design variants with a product mindset. Avoid short-term implementation optimizations at the
expense of unnecessary client side obligations, and have a high attention on API quality and client
developer experience.

API as a Product is closely related to our API First principle (see next chapter) which is more
focused on how we engineer high quality APIs.

3.1.3. API first
o Refer to Pon achitecture principles

API First is one of our engineering and architecture principles. In a nutshell API First requires two
aspects:
* define APIs first, before coding its implementation, using a standard specification language
 get early review feedback from peers and client developers
By defining APIs outside the code, we want to facilitate early review feedback and also a
development discipline that focus service interface design on...
* profound understanding of the domain and required functionality
» generalized business entities / resources, i.e. avoidance of use case specific APIs

* clear separation of WHAT vs. HOW concerns, i.e. abstraction from implementation aspects —
APIs should be stable even if we replace complete service implementation including its
underlying technology stack

Moreover, API definitions with standardized specification format also facilitate...

* single source of truth for the API specification; it is a crucial part of a contract between service
provider and client users

* infrastructure tooling for API discovery, API GUIs, API documents, automated quality checks
Elements of API First are also this API Guidelines and a standardized API review process as to get
early review feedback from peers and client developers. Peer review is important for us to get high

quality APIs, to enable architectural and design alignment and to supported development of client
applications decoupled from service provider engineering life cycle.

20

It is important to learn, that API First is not in conflict with the agile development principles that
we love. Service applications should evolve incrementally — and so its APIs. Of course, our API
specification will and should evolve iteratively in different cycles; however, each starting with draft
status and early team and peer review feedback. API may change and profit from implementation
concerns and automated testing feedback. API evolution during development life cycle may include
breaking changes for not yet productive features and as long as we have aligned the changes with
the clients. Hence, API First does not mean that you must have 100% domain and requirement
understanding and can never produce code before you have defined the complete API and get it
confirmed by peer review. On the other hand, API First obviously is in conflict with the bad practice
of publishing API definition and asking for peer review after the service integration or even the
service productive operation has started. It is crucial to request and get early feedback — as early
as possible, but not before the API changes are comprehensive with focus to the next evolution step
and have a certain quality (including API Guideline compliance), already confirmed via team
internal reviews.

3.2. Solution design

This section descibes the generic guidelines for integration solution design.

3.2.1. Microservices

3.2.2. Connectivity

3.2.2.1. (RFP) MUST have self-healing connectivity

External connections (e.g. SFTP, Database, SAP or Email) need to be monitored and automatically
reset and restored when connection issues occur. The frequency for these reconnections and after
how many retries to send an alert needs to be agreed upon with the business.

However, if no such agreements are in place, we set as default to retry once every minute and send
an alert when reconnection has failed for an hour. After the alert has been sent, reconnection
attempts must continue until successful.

3.2.2.2. (RFP) SHOULD have increasing reconnection intervals

When reconnection strategies are deployed they should have increasing reconnection intervals. For
example 1s, 2s, 4s etc.

3.2.3. Loosely coupled
3.2.4. Security

3.2.5. Monitoring

3.2.5.1. (RFP) MUST setup monitoring and alerting connections

All connections must be monitored and alerting has to be setup based on the monitoring.

21

3.2.6. Documentation

3.2.7. Security

3.3. Generic

3.3.1. Pagination

3.3.1.1. MUST support pagination

Access to lists of data items must support pagination to protect the service against overload as well
as for best client side iteration and batch processing experience. This holds true for all lists that are
(potentially) larger than just a few hundred entries.

There are two well known page iteration techniques:

* Offset/Limit-based pagination: numeric offset identifies the first page entry
 Cursor/Limit-based — aka key-based — pagination: a unique key element identifies the first

page entry (see also Facebook’s guide)

The technical conception of pagination should also consider user experience related issues. As
mentioned in this article, jumping to a specific page is far less used than navigation via next/prev
page links (See SHOULD use pagination links where applicable). This favours cursor-based over
offset-based pagination.

Note: To provide a consistent look and feel of pagination patterns, you must stick to the common
query parameter names defined in MUST stick to conventional query parameters.

3.3.1.2. SHOULD prefer cursor-based pagination, avoid offset-based pagination

Cursor-based pagination is usually better and more efficient when compared to offset-based
pagination. Especially when it comes to high-data volumes and/or storage in NoSQL databases.

Before choosing cursor-based pagination, consider the following trade-offs:

* Usability/framework support:

o Offset-based pagination is more widely known than cursor-based pagination, so it has more
framework support and is easier to use for API clients

» Use case - jump to a certain page:

o If jumping to a particular page in a range (e.g., 51 of 100) is really a required use case,
cursor-based navigation is not feasible.

* Data changes may lead to anomalies in result pages:

o Offset-based pagination may create duplicates or lead to missing entries if rows are inserted
or deleted between two subsequent paging requests.

o If implemented incorrectly, cursor-based pagination may fail when the cursor entry has
been deleted before fetching the pages.

22

https://developer.infoconnect.com/paging-results
https://dev.twitter.com/overview/api/cursoring
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.4#paging
https://www.smashingmagazine.com/2016/03/pagination-infinite-scrolling-load-more-buttons/
#next
#prev

* Performance considerations - efficient server-side processing using offset-based pagination is
hardly feasible for:

o Very big data sets, especially if they cannot reside in the main memory of the database.
o Sharded or NoSQL databases.

» Cursor-based navigation may not work if you need the total count of results.

The cursor used for pagination is an opaque pointer to a page, that must never be inspected or
constructed by clients. It usually encodes (encrypts) the page position, i.e. the identifier of the first
or last page element, the pagination direction, and the applied query filters - or a hash over these -
to safely recreate the collection. The cursor may be defined as follows:

Cursor:
type: object
properties:
position:
description: >
Object containing the identifier(s) pointing to the entity that is
defining the collection resource page - normally the position is
represented by the first or the last page element.
type: object
properties: ...

direction:
description: >
The pagination direction that is defining which elements to choose
from the collection resource starting from the page position.
type: string
enum: [ASC, DESC]

query:
description: >
Object containing the query filters applied to create the collection
resource that is represented by this cursor.
type: object
properties: ...

query_hash:
description: >
Stable hash calculated over all query filters applied to create the
collection resource that is represented by this cursor.
type: string

required:

- position
- direction

The page information for cursor-based pagination should consist of a cursor set, that besides next
may provide support for prev, first, last, and self as follows (see also Link relation fields):

23

#cursor
#cursor
#cursor
#next
#prev
#first
#last
#self

{

"cursors": {
"self": "...",
“first": "...",
“prev": "...",
"next": "...",
"last": "..."

o

"items": [...]

}

Note: The support of the cursor set may be dropped in favor of SHOULD use pagination links
where applicable.

Further reading:

o Twitter
¢ Use the Index, Luke

* Paging in PostgreSQL

3.3.1.3. SHOULD use pagination links where applicable

To simplify client design, APIs should support simplified hypertext controls for pagination over
collections whenever applicable. Beside next this may comprise the support for prev, first, last,
and self as link relations (see also Link relation fields for details).

The first position at the api pagination should be 0, and every next position should be increased by
1. Starting with zero makes the math simple. API is designed to consumed by another system, and
all code starts lists with zero. https://en.wikipedia.org/wiki/Zero-based_numbering

If the next position doesn’t have results, it shoudn’t return a link.

The page content is transported via items, while the query object may contain the query filters
applied to the collection resource as follows:

"self": "http://my-service.pon.com/resources?cursor=<self-position>",
“first": "http://my-service.pon.com/resources?cursor=<first-position>",
“prev": "http://my-service.pon.com/resources?cursor=<previous-position>",
"next": "http://my-service.pon.com/resources?cursor=<next-position>",
"last": "http://my-service.pon.com/resources?cursor=<last-position>",
"query": {

"query-param-<1>": ...,

"query-param-<n>": ...
¥

"items": [...]

24

#cursor
https://dev.twitter.com/rest/public/timelines
http://use-the-index-luke.com/no-offset
https://www.citusdata.com/blog/1872-joe-nelson/409-five-ways-paginate-postgres-basic-exotic
#next
#prev
#first
#last
#self
http://www.iana.org/assignments/link-relations
https://en.wikipedia.org/wiki/Zero-based_numbering
#items
#query

Note: In case of complex search requests, e.g. when GET With Body is required, the cursor may not
be able to encode all query filters. In this case, it is best practice to encode only page position and
direction in the cursor and transport the query filter in the body - in the request as well as in the
response. To protect the pagination sequence, in this case it is recommended, that the cursor
contains a hash over all applied query filters for pagination request validation.

Remark: You should avoid providing a total count unless there is a clear need to do so. Very often,
there are significant system and performance implications when supporting full counts. Especially,
if the data set grows and requests become complex queries and filters drive full scans. While this is
an implementation detail relative to the API, it is important to consider the ability to support
serving counts over the life of a service.

3.4. Types

3.4.1. FTP

3.4.1.1. Monitoring
3.4.1.2. Documentation

3.4.1.3. Security

3.5. General guidelines

The titles are marked with the corresponding labels: MUST, SHOULD, MAY.

3.5.1. (RFP) MUST follow API first principle

You must follow the API First Principle, more specifically:

* You must define APISs first, before coding its implementation.

* You must call for review feedback from peers and client developers.

3.5.2. (RFP) MUST provide API specification

Must provide API specification according to standards as specified for API platform.

The API specification files should be subject to version control using a source code management
system - best together with the implementing sources.

You must / should publish the component external / internal API specification with the deployment
of the implementing service, and, hence, make it discoverable.

3.5.3. (RFP) MUST only use durable and immutable remote references

Normally, API specification files must be self-contained, i.e. files should not contain references to

local or remote content, e.g. ../fragment.yaml#/element or $ref:
"https://github.com/zalando/zally/blob/master/server/src/main/resources/api/zally-

25

#get-with-body
#cursor
#cursor
#cursor

api.yaml#/schemas/LintingRequest".

3.5.4. (RFP) MAY provide API user manual

In addition to the API Specification, it is good practice to provide an API user manual to improve
client developer experience, especially of engineers that are less experienced in using this API. A
helpful API user manual typically describes the following API aspects:

» API scope, purpose, and use cases

» concrete examples of API usage

* edge cases, error situation details, and repair hints

* architecture context and major dependencies - including figures and sequence flows
The user manual must be published online, e.g. via our documentation hosting platform service,

GHE pages, or specific team web servers. Please do not forget to include a link to the API user
manual into the API specification using the #/externalDocs/url property.

3.6. Meta information

3.6.1. (RFP) SHOULD contain API meta information

API specifications must contain the following meta information to allow for API management:

* #/info/title as (unique) identifying, functional descriptive name of the API

* #/info/version to distinguish API specifications versions following semantic rules
* #/info/description containing a proper description of the API

* #/info/contact/{name,url,email} containing the responsible team

* #/info/api-id unique identifier of the API (see rule 215)

#/info/audience intended target audience of the API (see rule 219)

3.6.2. (RFP) MAY use semantic versioning

Open API allows to specify the API specification version in #/info/version. To share a common
semantic of version information we expect API designers to comply to Semantic Versioning 2.0
rules 1to 8 and 11 restricted to the format <MAJOR>.<MINOR>.<PATCH> for versions as follows:

* Increment the MAJOR version when you make incompatible API changes after having aligned
this changes with consumers,

* Increment the MINOR version when you add new functionality in a backwards-compatible
manner, and

* Optionally increment the PATCH version when you make backwards-compatible bug fixes or
editorial changes not affecting the functionality.

Additional Notes:

26

http://semver.org/spec/v2.0.0.html

* Pre-release versions (rule 9) and build metadata (rule 10) must not be used in API version
information.

* While patch versions are useful for fixing typos etc, API designers are free to decide whether
they increment it or not.

* API designers should consider to use API version 0.y.z (rule 4) for initial API design.

Example:

openapi: 3.0.1

info:
title: Parcel Service API
description: API for <...>
version: 1.3.7
< .u>

3.6.3. (RFP) MAY provide API identifiers

Each API specification may be provisioned with a globally unique and immutable API identifier.

/info/api-id:

type: string

format: urn

pattern: A[a-z0-9][a-z0-9-:.1{6,62}[a-z0-9]%

description: |
Mandatory globally unique and immutable API identifier. The API
id allows to track the evolution and history of an API specification
as a sequence of versions.

API specifications will evolve and any aspect of an API specification may change. We require API
identifiers because we want to support API clients and providers with API lifecycle management
features, like change trackability and history or automated backward compatibility checks. The
immutable API identifier allows the identification of all API specification versions of an API
evolution. By using API semantic version information or API publishing date as order criteria you
get the version or publication history as a sequence of API specifications.

Note: While it is nice to use human readable API identifiers based on self-managed URNSs, it is
recommend to stick to UUIDs to relief API designers from any urge of changing the API identifier
while evolving the API. Example:

openapi: 3.0.1
info:
api-id: d0184f38-b98d-11e7-9c56-68f728c1ba70
title: Parcel Service API
description: API for <...>
version: 1.5.8
< WD

27

http://semver.org#spec-item-9
http://semver.org#spec-item-10
http://semver.org/#spec-item-4

3.6.4. (RFP) SHOULD provide API audience

Each API must be classified with respect to the intended target audience supposed to consume the
API, to facilitate differentiated standards on APIs for discoverability, changeability, quality of design
and documentation, as well as permission granting. We differentiate the following API audience
groups with clear organisational and legal boundaries:

component-internal

This is often referred to as a team internal API or a product internal API. The API consumers with
this audience are restricted to applications of the same functional component which typically
represents a specific product with clear functional scope and ownership. All services of a
functional component / product are owned by a specific dedicated owner and engineering
team(s). Typical examples of component-internal APIs are APIs being used by internal helper
and worker services or that support service operation.

business-unit-internal

The API consumers with this audience are restricted to applications of a specific product
portfolio owned by the same business unit.

company-internal

The API consumers with this audience are restricted to applications owned by the business units
of the same the company.

external-partner

The API consumers with this audience are restricted to applications of business partners of the
company owning the API and the company itself.

external-public

APIs with this audience can be accessed by anyone with Internet access.

Note: a smaller audience group is intentionally included in the wider group and thus does not need
to be declared additionally.

The API audience is provided as API meta information in the info-block of the Open API
specification and must conform to the following specification:

/info/x-audience:

type: string

x-extensible-enum:
- component-internal
- business-unit-internal
- company-internal
- external-partner
- external-public

description: |
Intended target audience of the API. Relevant for standards around
quality of design and documentation, reviews, discoverability,
changeability, and permission granting.

28

Note: Exactly one audience per API specification is allowed. For this reason a smaller audience
group is intentionally included in the wider group and thus does not need to be declared
additionally. If parts of your API have a different target audience, we recommend to split API
specifications along the target audience.

Example:

openapi: 3.0.1

info:
x-audience: company-internal
title: Parcel Helper Service API
description: API for <...>
version: 1.2.4
< o>

For details and more information on audience groups see the Pon internal documentation

TODO: add link to internal documentation regarding API audience issue 2

3.7. Security

3.7.1. (RFP) MUST secure endpoints

Every API endpoint should be secured, also for anonymous access. The preferred authentication
method is OAuth 2.0. For anonymous access the client credentials grant is preferred.

The following code snippet shows how to define the authorization scheme using a bearer token (e.g.
JWT token).

components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
bearerFormat: JWT

The next code snippet applies this security scheme to all API endpoints. The bearer token of the
client must have additionally the scopes "scope_1" and "scope_2".

security:
- BearerAuth: [scope_1, scope_2]

3.7.1.1. References

¢ OAuth.net - Client Credentials Grant

¢ OKTA - Server to server auth

29

https://github.com/PonDigitalSolutions/restful-api-guidelines/issues/2
https://oauth.net/2/grant-types/client-credentials/
https://support.okta.com/help/s/question/0D51Y0000ALnukj/using-okta-for-server-to-server-authorization?language=en_US

* IBM - Anonymous authentication

» RFC6749 - Client credentials grant

3.7.2. (RFP) SHOULD define and assign permissions (scopes)

APIs should define permissions to protect their resources. Thus, at least one permission must be
assigned to each endpoint. Permissions are defined as shown in the previous section.

The naming schema for permissions corresponds to the naming schema for hostnames and event
type names. Please refer to (RFP) MAY follow naming convention for permissions (scopes) for
designing permission names.

APIs should stick to component specific permissions without resource extension to avoid
governance complexity of too many fine grained permissions. For the majority of use cases,
restricting access to specific API endpoints using read and write is sufficient for controlling access
for client types like merchant or retailer business partners, customers or operational staff.
However, in some situations, where the API serves different types of resources for different
owners, resource specific scopes may make sense.

Some examples for standard and resource-specific permissions:

Application ID Resource ID Access Type Example

order-management sales_order read order-management.sales_order.read
order-management shipment_order read order-management.shipment_order.read
fulfillment-order write fulfillment-order.write
business-partner- read business-partner-service.read
service

After permission names are defined and the permission is declared in the security definition at the
top of an API specification, it should be assigned to each API operation by specifying a security
requirement like this:

paths:
/business-partners/{partner-id}:
get:
summary: Retrieves information about a business partner
security:
- BearerAuth: [business-partner-service.read]

In very rare cases a whole API or some selected endpoints may not require specific access control.
However, to make this explicit you should assign the vid pseudo permission in this case. It is the
user id and always available as OAuth2 default scope.

paths:
/public-information:
get:
summary: Provides public information about ...

30

https://cloud.ibm.com/docs/appid?topic=appid-anonymous
https://tools.ietf.org/html/rfc6749#section-4.4
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#securityRequirementObject

Accessible by any user; no permissions needed.
security:
- BearerAuth: [uid]

Hint: you need not explicitly define the "Authorization" header; it is a standard header so to say
implicitly defined via the security section.

3.7.3. (RFP) MAY follow naming convention for permissions (scopes)

As long as the functional naming is not supported for permissions, permission names in APIs must
conform to the following naming pattern:

<permission> ::= <standard-permission> | -- should be sufficient for majority of use
cases

<resource-permission> | -- for special security access
differentiation use cases

<pseudo-permission> -- used to explicitly indicate that access

is not restricted

<standard-permission> ::= <application-id>.<access-mode>
<resource-permission> ::= <application-id>.<resource-name>.<access-mode>
<pseudo-permission> ::= uid

<application-id> := [a-z][a-z0-9-]* -- application identifier
<resource-name> ::= [a-z][a-z0-9-]* -- free resource identifier
<access-mode> ::= read | write -- might be extended in future

This pattern is compatible with the previous definition.

3.8. Compatibility

3.8.1. (RFP) MUST not break backward compatibility

Change APIs, but keep all consumers running. Consumers usually have independent release
lifecycles, focus on stability, and avoid changes that do not provide additional value. APIs are
contracts between service providers and service consumers that cannot be broken via unilateral
decisions.

There are two techniques to change APIs without breaking them:

« follow rules for compatible extensions

* introduce new API versions and still support older versions
We strongly encourage using compatible API extensions and discourage versioning (see (RFP)
SHOULD avoid versioning and {STATUS-TODO} MUST API Versioning Has No “Right Way” below).

The following guidelines for service providers ((RFP) SHOULD prefer compatible extensions) and
consumers ((RFP) MUST prepare clients accept compatible API extensions) enable us (having

31

Postel’s Law in mind) to make compatible changes without versioning.

Note: There is a difference between incompatible and breaking changes. Incompatible changes are
changes that are not covered by the compatibility rules below. Breaking changes are incompatible
changes deployed into operation, and thereby breaking running API consumers. Usually,
incompatible changes are breaking changes when deployed into operation. However, in specific
controlled situations it is possible to deploy incompatible changes in a non-breaking way, if no API
consumer is using the affected API aspects (see also Deprecation guidelines).

Hint: Please note that the compatibility guarantees are for the "on the wire" format. Binary or
source compatibility of code generated from an API definition is not covered by these rules. If client
implementations update their generation process to a new version of the API definition, it has to be
expected that code changes are necessary.

3.8.2. (RFP) SHOULD prefer compatible extensions

API designers may apply the following rules to evolve APIs for services in a backward-compatible
way:
* Add only optional, never mandatory fields.

* Never change the semantic of fields (e.g. changing the semantic from customer-number to
customer-id, as both are different unique customer keys)

* Input fields may have (complex) constraints being validated via server-side business logic.
Never change the validation logic to be more restrictive and make sure that all constraints are
clearly defined in description.

* Enum ranges can be reduced when used as input parameters, only if the server is ready to
accept and handle old range values too. Enum range can be reduced when used as output
parameters.

* Enum ranges cannot be extended when used for output parameters — clients may not be
prepared to handle it. However, enum ranges can be extended when used for input parameters.

* Use x-extensible-enum, if range is used for output parameters and likely to be extended with
growing functionality. It defines an open list of explicit values and clients must be agnostic to
new values.

» Support redirection in case an URL has to change 301 (Moved Permanently).
3.8.3. (RFP) MUST prepare clients accept compatible API extensions
Service clients should apply the robustness principle:

* Be conservative with API requests and data passed as input, e.g. avoid to exploit definition
deficits like passing megabytes of strings with unspecified maximum length.

* Be tolerant in processing and reading data of API responses, more specifically...
Service clients must be prepared for compatible API extensions of service providers:

* Be tolerant with unknown fields in the payload (see also Fowler’s "TolerantReader" post), i.e.
ignore new fields but do not eliminate them from payload if needed for subsequent PUT

32

#112
#status-code-301
http://martinfowler.com/bliki/TolerantReader.html
#put

requests.

* Be prepared that x-extensible-enum return parameter may deliver new values; either be
agnostic or provide default behavior for unknown values.

* Be prepared to handle HTTP status codes not explicitly specified in endpoint definitions. Note
also, that status codes are extensible. Default handling is how you would treat the
corresponding 2xx code (see RFC 7231 Section 6).

* Follow the redirect when the server returns HTTP status code 301 (Moved Permanently).

3.8.4. (RFP) SHOULD design APIs conservatively

Designers of service provider APIs should be conservative and accurate in what they accept from
clients:

* Unknown input fields in payload or URL should not be ignored; servers should provide error
feedback to clients via an HTTP 400 response code.

* Be accurate in defining input data constraints (like formats, ranges, lengths etc.) — and check
constraints and return dedicated error information in case of violations.

» Prefer being more specific and restrictive (if compliant to functional requirements), e.g. by
defining length range of strings. It may simplify implementation while providing freedom for
further evolution as compatible extensions.

Not ignoring unknown input fields is a specific deviation from Postel’s Law (e.g. see also

The Robustness Principle Reconsidered) and a strong recommendation. Servers might want to take
different approach but should be aware of the following problems and be explicit in what is
supported:

 Ignoring unknown input fields is actually not an option for PUT, since it becomes asymmetric
with subsequent GET response and HTTP is clear about the PUT replace semantics and default
roundtrip expectations (see RFC 7231 Section 4.3.4). Note, accepting (i.e. not ignoring) unknown
input fields and returning it in subsequent GET responses is a different situation and compliant
to PUT semantics.

* Certain client errors cannot be recognized by servers, e.g. attribute name typing errors will be
ignored without server error feedback. The server cannot differentiate between the client
intentionally providing an additional field versus the client sending a mistakenly named field,
when the client’s actual intent was to provide an optional input field.

* Future extensions of the input data structure might be in conflict with already ignored fields
and, hence, will not be compatible, i.e. break clients that already use this field but with different

type.

In specific situations, where a (known) input field is not needed anymore, it either can stay in the
API definition with "not used anymore" description or can be removed from the API definition as
long as the server ignores this specific parameter.

33

#112
#http-status-codes-and-errors
https://tools.ietf.org/html/rfc7231#section-6
#status-code-301
https://cacm.acm.org/magazines/2011/8/114933-the-robustness-principle-reconsidered/fulltext
#put
#get
#put
https://tools.ietf.org/html/rfc7231#section-4.3.4
#get
#put

3.8.5. (RFP) MUST always return JSON objects as top-level data structures if
JSON is being used

In a JSON response body, you must always return a JSON object (and not e.g. an array) as a top level
data structure to support future extensibility. JSON objects support compatible extension by
additional attributes. This allows you to easily extend your response and e.g. add pagination later,
without breaking backwards compatibility. See SHOULD use pagination links where applicable for
an example.

Maps (see SHOULD define maps using additionalProperties), even though technically objects, are
also forbidden as top level data structures, since they don’t support compatible, future extensions.

{TODO} Add example

3.8.6. (RFP) SHOULD refrain from using enumerations

Enumerations are per definition closed sets of values, that are assumed to be complete and not
intended for extension. This closed principle of enumerations imposes compatibility issues when
an enumeration must be extended. To avoid these issues, we strongly recommend to use an open-
ended list of values instead of an enumeration unless:

1. the API has full control of the enumeration values, i.e. the list of values does not depend on any
external tool or interface, and
2. the list of value is complete with respect to any thinkable and unthinkable future feature.

3. the values must be enforced.

To specify an open-ended list of values use the marker x-extensible-enum as follows:

delivery_methods:
type: string
x-extensible-enum:
- PARCEL
- LETTER
- EMAIL

Note: x-extensible-enum is not JSON Schema conform but will be ignored by most tools.

See MUST declare enum values using UPPER_SNAKE_CASE format about enum value naming
conventions.

3.8.7. (RFP) SHOULD avoid versioning

When changing your APIs, do so in a compatible way and avoid generating additional API versions
unless the API is non-functional or is degraded. Multiple versions can significantly complicate
understanding, testing, maintaining, evolving, operating and releasing our systems (supplementary
reading).

If changing an API can’t be done in a compatible way, then proceed in one of these three ways:

34

#112
#112
http://martinfowler.com/articles/enterpriseREST.html
http://martinfowler.com/articles/enterpriseREST.html

e create a new resource (variant) in addition to the old resource variant

* create a new service endpoint — i.e. a new application with a new API (with a new domain
name)

 create a new API version supported in parallel with the old API by the same microservice

As we discourage versioning by all means because of the manifold disadvantages, we strongly
recommend to only use the first two approaches.

3.8.8. {STATUS-TODO} MUST API Versioning Has No “Right Way”

API Versioning Has No "Right Way" provides an overview on different versioning approaches to
handle breaking changes without being opinionated.

3.8.9. (RFP) SHOULD use URI versioning

With URI versioning a (major) version number is included in the path, e.g. /v1/customers. The
consumer has to wait until the provider has been released and deployed.

3.9. Deprecation

Sometimes it is necessary to phase out an API endpoint, an API version, or an API feature, e.g. if a
field or parameter is no longer supported or a whole business functionality behind an endpoint is
supposed to be shut down. As long as the API endpoints and features are still used by consumers
these shut downs are breaking changes and not allowed. To progress the following deprecation
rules have to be applied to make sure that the necessary consumer changes and actions are well
communicated and aligned using deprecation and sunset dates.

3.9.1. (RFP) MUST obtain approval of clients before API shut down

Before shutting down an API, version of an API, or API feature the producer must make sure, that
all clients have given their consent on a sunset date. Producers should help consumers to migrate to
a potential new API or API feature by providing a migration manual and clearly state the time line
for replacement availability and sunset (see also (RFP) SHOULD add Deprecation and Sunset header
to responses). Once all clients of a sunset API feature are migrated, the producer may shut down the
deprecated API feature.

3.9.2. (RFP) MUST collect external partner consent on deprecation time
span

If the API is consumed by any external partner, the API owner must define a reasonable time span
that the API will be maintained after the producer has announced deprecation. All external
partners must state consent with this after-deprecation-life-span, i.e. the minimum time span
between official deprecation and first possible sunset, before they are allowed to use the API.

3.9.3. (RFP) MUST reflect deprecation in API specifications

The API deprecation must be part of the API specification.

35

https://blog.apisyouwonthate.com/api-versioning-has-no-right-way-f3c75457c0b7

If an API endpoint (operation object), an input argument (parameter object), an in/out data object
(schema object), or on a more fine grained level, a schema attribute or property should be
deprecated, the producers must set deprecated: true for the affected element and add further
explanation to the description section of the API specification. If a future shut down is planned, the
producer must provide a sunset date and document in details what consumers should use instead
and how to migrate.

3.9.4. (RFP) MUST monitor usage of deprecated API scheduled for sunset

Owners of an API, API version, or API feature used in production that is scheduled for sunset must
monitor the usage of the sunset API, API version, or API feature in order to observe migration
progress and avoid uncontrolled breaking effects on ongoing consumers. See also SHOULD monitor
API usage.

3.9.5. (RFP) SHOULD add Deprecation and Sunset header to responses

During the deprecation phase, the producer should add a Deprecation: <date-time> (see draft: RFC
Deprecation HTTP Header) and - if also planned - a Sunset: <date-time> (see RFC 8594) header on
each response affected by a deprecated element (see (RFP) MUST reflect deprecation in API
specifications).

The Deprecation header can either be set to true - if a feature is retired -, or carry a deprecation time
stamp, at which a replacement will become/became available and consumers must not on-board
any longer (see (RFP) MUST not start using deprecated APIs). The optional Sunset time stamp
carries the information when consumers latest have to stop using a feature. The sunset date should
always offer an eligible time interval for switching to a replacement feature.

Deprecation: Sun, 31 Dec 2024 23:59:59 GMT
Sunset: Sun, 31 Dec 2025 23:59:59 GMT

If multiple elements are deprecated the Deprecation and Sunset headers are expected to be set to the
earliest time stamp to reflect the shortest interval consumers are expected to get active.

Note: adding the Deprecation and Sunset header is not sufficient to gain client consent to shut down
an API or feature.

Hint: In earlier guideline versions, we used the Warning header to provide the deprecation info to
clients. However, Warning header has a less specific semantics, will be obsolete with draft: RFC HTTP
Caching, and our syntax was not compliant with RFC 7234 — Warning header.

3.9.6. (RFP) SHOULD add monitoring for Deprecation and Sunset header

Clients should monitor the Deprecation and Sunset headers in HTTP responses to get information
about future sunset of APIs and API features (see (RFP) SHOULD add Deprecation and Sunset
header to responses). We recommend that client owners build alerts on this monitoring
information to ensure alignment with service owners on required migration task.

Hint: In earlier guideline versions, we used the Warning header to provide the deprecation info (see

36

https://tools.ietf.org/html/draft-dalal-deprecation-header
https://tools.ietf.org/html/draft-dalal-deprecation-header
https://tools.ietf.org/html/rfc8594#section-3
https://tools.ietf.org/html/draft-dalal-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-dalal-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-dalal-deprecation-header
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/draft-ietf-httpbis-cache-06
https://tools.ietf.org/html/draft-ietf-httpbis-cache-06
https://tools.ietf.org/html/rfc7234#page-29
https://tools.ietf.org/html/draft-dalal-deprecation-header
https://tools.ietf.org/html/rfc8594

hint in (RFP) SHOULD add Deprecation and Sunset header to responses).

3.9.7. (RFP) MUST not start using deprecated APIs

Clients must not start using deprecated APIs, API versions, or API features.

3.10. Common data types

Definitions of data objects that are good candidates for wider usage:

3.10.1. (RFP) MUST use the common money object

Use the following common money structure:

Money:
type: object
properties:
amount:
type: number
description: >
The amount describes unit and subunit of the currency in a single value,
where the integer part (digits before the decimal point) is for the
major unit and fractional part (digits after the decimal point) is for
the minor unit.
format: decimal
example: 99.95
currency:
type: string
description: 3 letter currency code as defined by IS0-4217
format: is0-4217
example: EUR
required:
- amount
- currency

APIs are encouraged to include a reference to the global schema for Money.

SalesOrder:
properties:
grand_total:
$ref: 'https://opensource.zalando.com/restful-api-guidelines/money-
1.0.0.yaml#/Money"

Please note that APIs have to treat Money as a closed data type, i.e. it’s not meant to be used in an
inheritance hierarchy. That means the following usage is not allowed:

37

"amount": 19.99,
"currency": "EUR",
"discounted_amount": 9.99

}

3.10.1.1. Cons

 Violates the Liskov Substitution Principle
* Breaks existing library support, e.g. Jackson Datatype Money

* Less flexible since both amounts are coupled together, e.g. mixed currencies are impossible

A better approach is to favor composition over inheritance:

{

"price": {
"amount": 19.99,
“currency": "EUR"

Iy,

"discounted_price": {
"amount": 9.99,
"currency": "EUR"

}

}
3.10.1.2. Pros

* No inheritance, hence no issue with the substitution principle
» Makes use of existing library support
* No coupling, i.e. mixed currencies is an option

* Prices are now self-describing, atomic values

3.10.1.3. Notes

Please be aware that some business cases (e.g. transactions in Bitcoin) call for a higher precision, so
applications must be prepared to accept values with unlimited precision, unless explicitly stated
otherwise in the API specification.

Examples for correct representations (in EUR):

e 4).200r 42.2 =42 Euros, 20 Cent

0.23 =23 Cent

47.0 or 42 = 42 Euros

1024.42 = 1024 Euros, 42 Cent

1024.4225 = 1024 Euros, 42.25 Cent

38

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://github.com/zalando/jackson-datatype-money
https://en.wikipedia.org/wiki/Composition_over_inheritance

Make sure that you don’t convert the "amount" field to float / double types when implementing this
interface in a specific language or when doing calculations. Otherwise, you might lose precision.
Instead, use exact formats like Java’s BigDecimal. See Stack Overflow for more info.

Some JSON parsers (Node]S’s, for example) convert numbers to floats by default. After discussing
the pros and cons we’ve decided on "decimal" as our amount format. It is not a standard Open API
format, but should help us to avoid parsing numbers as float / doubles.

3.10.2. (RFP) MUST use common field names and semantics

There exist a variety of field types that are required in multiple places. To achieve consistency
across all API implementations, you must use common field names and semantics whenever
applicable.

3.10.2.1. Generic fields

There are some data fields that come up again and again in API data:

* id: the identity of the object. If used, IDs must be opaque strings and not numbers. IDs are
unique within some documented context, are stable and don’t change for a given object once
assigned, and are never recycled cross entities.

* xyz_id: an attribute within one object holding the identifier of another object must use a name
that corresponds to the type of the referenced object or the relationship to the referenced object
followed by _id (e.g. partner_id not partner_number, or parent_node_id for the reference to a
parent node from a child node, even if both have the type Node). Exception: We use
customer_number instead of customer_id for customer facing identification of customers due to
legacy reasons.

» created_at: when the object was created. If used, this must be a date-time construct. Originally
named created before adding the naming conventions for date/time properties.

» modified_at: when the object was updated. If used, this must be a date-time construct. Originally
named modified before adding the naming conventions for date/time properties.

* type: the kind of thing this object is. If used, the type of this field should be a string. Types allow
runtime information on the entity provided that otherwise requires examining the Open API
file.

* ETag: the ETag of an embedded sub-resource. It may be used to carry the ETag for subsequent
PUT/PATCH calls (see ETags in result entities).

Example JSON schema:

tree_node:
type: object
properties:
id:
description: the identifier of this node
type: string
created_at:
description: when got this node created

39

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://stackoverflow.com/a/3730040/342852
#id
#xyz_id
#created_at
#created
#modified_at
#modified
#type
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
#put
#patch

type: string
format: 'date-time'
modified at:
description: when got this node last updated
type: string
format: 'date-time'
type:
type: string
enum: ['LEAF', 'NODE']
parent_node_id:
description: the identifier of the parent node of this node
type: string
example:
id: "123435'
created_at: '2017-04-12T723:20:50.527"
modified at: '2017-04-12723:20:50.527'
type: 'LEAF'
parent_node_id: '534321'

These properties are not always strictly necessary, but making them idiomatic allows API client
developers to build up a common understanding of Pon’s resources. There is very little utility for
API consumers in having different names or value types for these fields across APIs.

3.10.2.2. Link relation fields

To foster a consistent look and feel using simple hypertext controls for paginating and iterating
over collection values the response objects should follow a common pattern using the below field
semantics:

 self:the link or cursor in a pagination response or object pointing to the same collection object
or page.

» first: the link or cursor in a pagination response or object pointing to the first collection object
or page.

 prev: the link or cursor in a pagination response or object pointing to the previous collection
object or page.

* next: the link or cursor in a pagination response or object pointing to the next collection object
or page.

* last: the link or cursor in a pagination response or object pointing to the last collection object or
page.

Pagination responses should contain the following additional array field to transport the page
content:

* items: array of resources, holding all the items of the current page (items may be replaced by a
resource name).

To simplify user experience, the applied query filters may be returned using the following field (see
also GET With Body):

40

#self
#first
#prev
#next
#last
#items
#items
#get-with-body

* query: object containing the query filters applied in the search request to filter the collection
resource.

As Result, the standard response page using pagination links is defined as follows:

ResponsePage:
type: object
properties:

self:
description: Pagination link pointing to the current page.
type: string
format: uri

first:
description: Pagination link pointing to the first page.
type: string
format: uri

prev:
description: Pagination link pointing to the previous page.
type: string
format: uri

next:
description: Pagination link pointing to the next page.
type: string
format: uri

last:
description: Pagination link pointing to the last page.
type: string
format: uri

query:
description: >
Object containing the query filters applied to the collection resource.
type: object
properties: ...

items:
description: Array of collection items.
type: array
required: false
items:

type: ...

The response page may contain additional metadata about the collection or the current page.

3.10.2.3. Address fields

Address structures play a role in different functional and use-case contexts, including country
variances. All attributes that relate to address information should follow the naming and semantics
defined below.

41

#query

42

addressee:
description: a (natural or legal) person that gets addressed
type: object
properties:
salutation:
description: |
a salutation and/or title used for personal contacts to some
addressee; not to be confused with the gender information!
type: string
example: Mr
first_name:
description: |
given name(s) or first name(s) of a person; may also include the
middle names.
type: string
example: Hans Dieter
last_name:
description: |
family name(s) or surname(s) of a person
type: string
example: Mustermann
business_name:
description: |
company name of the business organization. Used when a business is
the actual addressee; for personal shipments to office addresses, use
‘care_of' instead.
type: string
example: Consulting Services GmbH
required:
- first_name
- last_name

address:
description:
an address of a location/destination
type: object
properties:
care_of:
description: |
(aka c/0) the person that resides at the address, if different from
addressee. E.g. used when sending a personal parcel to the
office /someone else's home where the addressee resides temporarily
type: string
example: Consulting Services GmbH
street:
description: |
the full street address including house number and street name
type: string
example: Schénhauser Allee 103
additional:

description: |
further details like building name, suite, apartment number, etc.
type: string
example: 2. Hinterhof rechts
city:
description: |
name of the city / locality
type: string
example: Berlin
zip:
description: |
zip code or postal code
type: string
example: 14265
country_code:
description: |
the country code according to
[1s0-3166-1-alpha-2](https://en.wikipedia.org/wiki/IS0_3166-1_alpha-2)
type: string
example: DE
required:
- street
- city
- zip
- country_code

Grouping and cardinality of fields in specific data types may vary based on the specific use case
(e.g. combining addressee and address fields into a single type when modeling an address label vs
distinct addressee and address types when modeling users and their addresses).

3.11. API naming

3.11.1. MUST/SHOULD use functional naming schema

Functional naming is a powerful, yet easy way to align global resources as host, permission, and
event names within an the application landscape. It helps to preserve uniqueness of names while
giving readers meaningful context information about the addressed component. Besides, the most
important aspect is, that it allows to keep APIs stable in the case of technical and organizational
changes (Pon for example maintains an internal naming convention).

To make use of this advantages for APIs with a larger audience we strongly recommended to follow
the functional naming schema for hostnames, permission names, and event names in APIs as
follows:

Functional Naming Audience
must external-public, external-partner

should company-internal, business-unit-internal

43

may component-internal

To conduct the functional naming schema, a unique functional-name is assigned to each functional
component. It is built of the domain name of the functional group the component is belonging to
and a unique a short identifier for the functional component itself:

<functional-domain>-<functional-component>
[a-z][a-z0-9]* -- managed functional group of components
[a-z][a-z0-9-]* -- name of owning functional component

<functional-name>
<functional-domain>
<functional-component>

Internal Hint: Use the simple functional name registry (internal link) to register your functional
name before using it. The registry is a centralized infrastructure service to ensure uniqueness of
your functional names (and available domains) and to support hostname DNS resolution.

Please see the following rules for detailed functional naming patterns:
* MUST follow naming convention for hostnames
* MUST follow naming convention for event type names

3.11.2. MUST follow naming convention for hostnames

Hostnames in APIs must, respectively should conform to the functional naming depending on the
audience as follows (see MUST/SHOULD use functional naming schema for details and
<functional-name> definition):

<hostname> <functional-hostname> | <application-hostname>

<functional-hostname> <functional-name>.pon.com

The following application specific legacy convention is only allowed for hostnames of component-
internal APIs:

<application-hostname> ::
<application-id>
<organization-id>
identifier

<application-id>.<organization-unit>.zalan.do
[a-z][a-z0-9-]* -- application identifier
[a-z][a-2z0-9-]* -- organization unit identifier, e.g. team

3.11.3. MUST use lowercase separate words with hyphens for path segments

Example:
/shipment-orders/{shipment-order-id}

This applies to concrete path segments and not the names of path parameters. For example
{shipment_order_id} would be ok as a path parameter.

44

https://github.bus.zalan.do/team-architecture/functional-component-registry

3.11.4. MUST use snake_case (never camelCase) for query parameters

Examples:

customer_number, order_id, billing_address

3.11.5. SHOULD prefer hyphenated-pascal-case for HTTP header fields

This is for consistency in your documentation (most other headers follow this convention). Avoid
camelCase (without hyphens). Exceptions are common abbreviations like "ID."

Examples:

Accept-Encoding
Apply-To-Redirect-Ref
Disposition-Notification-Options
Original-Message-ID

See also: HTTP Headers are case-insensitive (RFC 7230).

See Common headers and Proprietary headers sections for more guidance on HTTP headers.

3.11.6. MUST pluralize resource names

Usually, a collection of resource instances is provided (at least API should be ready here). The
special case of a resource singleton is a collection with cardinality 1.

3.11.7. SHOULD not use /api as base path

In most cases, all resources provided by a service are part of the public API, and therefore should
be made available under the root "/" base path.

If the service should also support non-public, internal APIs — for specific operational support
functions, for example — we encourage you to maintain two different API specifications and
provide API audience. For both APIs, you should not use /api as base path.

We see API’s base path as a part of deployment variant configuration. Therefore, this information
has to be declared in the server object.

3.11.8. MUST avoid trailing slashes

The trailing slash must not have specific semantics. Resource paths must deliver the same results
whether they have the trailing slash or not.

3.11.9. MUST stick to conventional query parameters

If you provide query support for searching, sorting, filtering, and paginating, you must stick to the
following naming conventions:

45

https://tools.ietf.org/html/rfc7230#page-22
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#server-object

q: default query parameter, e.g. used by browser tab completion; should have an entity specific
alias, e.g. sku.

* sort: comma-separated list of fields (as defined by MUST define collection format of header and
query parameters) to define the sort order. To indicate sorting direction, fields may be prefixed
with + (ascending) or - (descending), e.g. /sales-orders?sort=+id.

» fields: field name expression to retrieve only a subset of fields of a resource. See SHOULD
support partial responses via filtering below.

* embed: field name expression to expand or embedded sub-entities, e.g. inside of an article entity,
expand silhouette code into the silhouette object. Implementing embed correctly is difficult, so do
it with care. See SHOULD allow optional embedding of sub-resources below.

» offset: numeric offset of the first element provided on a page representing a collection request.
See Pagination section below.

* cursor: an opaque pointer to a page, never to be inspected or constructed by clients. It usually
(encrypted) encodes the page position, i.e. the identifier of the first or last page element, the
pagination direction, and the applied query filters to recreate the collection. See pagination
section below.

* limit: client suggested limit to restrict the number of entries on a page. See Pagination section
below.

3.12. Resources

3.12.1. MUST avoid actions — think about resources

REST is all about your resources, so consider the domain entities that take part in web service
interaction, and aim to model your API around these using the standard HTTP methods as
operation indicators. For instance, if an application has to lock articles explicitly so that only one
user may edit them, create an article lock with PUT or POST instead of using a lock action.

Request:
PUT /article-locks/{article-id}

The added benefit is that you already have a service for browsing and filtering article locks.

3.12.2. SHOULD model complete business processes

An API should contain the complete business processes containing all resources representing the
process. This enables clients to understand the business process, foster a consistent design of the
business process, allow for synergies from description and implementation perspective, and
eliminates implicit invisible dependencies between APIs.

In addition, it prevents services from being designed as thin wrappers around databases, which
normally tends to shift business logic to the clients.

46

#q
#sort
#fields
#embed
#embed
#offset
#cursor
#limit
#put
#post

3.12.3. SHOULD define useful resources

As a rule of thumb resources should be defined to cover 90% of all its client’s use cases. A useful
resource should contain as much information as necessary, but as little as possible. A great way to
support the last 10% is to allow clients to specify their needs for more/less information by
supporting filtering and embedding.

3.12.4. MUST keep URLs verb-free

The API describes resources, so the only place where actions should appear is in the HTTP methods.
In URLs, use only nouns. Instead of thinking of actions (verbs), it’s often helpful to think about
putting a message in a letter box: e.g., instead of having the verb cancel in the url, think of sending a
message to cancel an order to the cancellations letter box on the server side.

3.12.5. MUST use domain-specific resource names

API resources represent elements of the application’s domain model. Using domain-specific
nomenclature for resource names helps developers to understand the functionality and basic
semantics of your resources. It also reduces the need for further documentation outside the API
definition. For example, "sales-order-items" is superior to "order-items" in that it clearly indicates
which business object it represents. Along these lines, "items" is too general.

3.12.6. MUST use URL-friendly resource identifiers

To simplify encoding of resource IDs in URLs, their representation must only consist of ASCII
strings using letters, numbers, underscore, minus, colon, period, and - on rare occasions - slash. The
corresponding regular expression is

[a-zA-Z0-9:. \-/]*

Note: slashes are only allowed to build and signal resource identifiers consisting of compound keys.

3.12.7. MUST identify resources and sub-resources via path segments

Some API resources may contain or reference sub-resources. Embedded sub-resources, which are
not top-level resources, are parts of a higher-level resource and cannot be used outside of its scope.
Sub-resources should be referenced by their name and identifier in the path segments as follows:

/resources/{resource-id}/sub-resources/{sub-resource-id}

In order to improve the consumer experience, you should aim for intuitively understandable URLs,
where each sub-path is a valid reference to a resource or a set of resources. E.g. if
/customers/12ev123bv12v/addresses/DE_100100101 is valid, then /customers/12ev123bv12v/addresses,
/customers/12ev123bv12v and /customers must be valid as well in principle. E.g.:

/customers/12ev123bv12v/addresses/DE_100100101
/customers/12ev123bv12v
/shopping-carts/de:1681e6b88ec1/items/1

47

/shopping-carts/de:1681e6b88ec1
/content/images/9cacb4d8
/content/images

Note: resource identifiers may be build of multiple other resource identifiers (see MAY expose
compound keys as resource identifiers).

3.12.8. MAY expose compound keys as resource identifiers

If a resource is best identified by a compound key consisting of multiple other resource identifiers, it
is allowed to reuse the compound Kkey in its natural form containing slashes instead of technical
resource identifier in the resource path without violating the above rule MUST identify resources
and sub-resources via path segments as follows:

/resources/{compound-key-1}[delim-1]...[delim-n-1]{compound-key-n}
Example paths:

/shopping-carts/{country}/{session-id}
/shopping-carts/{country}/{session-id}/items/{item-id}
/api-specifications/{docker-image-id}/apis/{path}/{file-name}
/api-specifications/{repository-name}/{artifact-name}:{tag}
/article-size-advices/{sku}/{sales-channel}

Warning: Exposing a compound key as described above limits ability to evolve the structure of the
resource identifier as it is no longer opaque.

To compensate for this drawback, APIs must apply a compound key abstraction consistently in all
requests and responses parameters and attributes allowing consumers to treat these as technical
resource identifier replacement. The use of independent compound key components must be
limited to search and creation requests, as follows:

compound key components passed as independent search query parameters
GET /article-size-advices?skus=sku-1,sku-2&sales_channel_id=sid-1
= { "items": [{ "id": "id-1", ... },{ "id": "id-2", ... }]1}

opaque technical resource identifier passed as path parameter
GET /article-size-advices/id-1
=> { "id": "id-1", "sku": "sku-1", "sales _channel _id": "sid-1", "size": ... }

compound key components passed as mandatory request fields
POST /article-size-advices { "sku": "sku-1", "sales_channel_id": "sid-1", "size": ...

}

=> { "id": "id-1", "sku": "sku-1", "sales_channel_id": "sid-1", "size": ... }

Where id-1 is representing the opaque provision of the compound key sku-1/sid-1 as technical

48

resource identifier.

Remark: A compound key component may itself be used as another resource identifier providing
another resource endpoint, e.g /article-size-advices/{sku}.

3.12.9. MAY consider using (non-)nested URLs

If a sub-resource is only accessible via its parent resource and may not exist without parent
resource, consider using a nested URL structure, for instance:

/shoping-carts/de/1681e6b88ec1/cart-items/1

However, if the resource can be accessed directly via its unique id, then the API should expose it as
a top-level resource. For example, customer has a collection for sales orders; however, sales orders
have globally unique id and some services may choose to access the orders directly, for instance:

/customers/1637asikzec]
/sales-orders/5273gh3k525a

3.12.10. SHOULD only use UUIDs if necessary

Generating IDs can be a scaling problem in high frequency and near real time use cases. UUIDs
solve this problem, as they can be generated without collisions in a distributed, non-coordinated
way and without additional server round trips.

However, they also come with some disadvantages:

* pure technical key without meaning; not ready for naming or name scope conventions that
might be helpful for pragmatic reasons, e.g. we learned to use names for product attributes,
instead of UUIDs

* less usable, because...

» cannot be memorized and easily communicated by humans
* harder to use in debugging and logging analysis

* less convenient for consumer facing usage

* quite long: readable representation requires 36 characters and comes with higher memory and
bandwidth consumption

* not ordered along their creation history and no indication of used id volume

* may be in conflict with additional backward compatibility support of legacy ids
UUIDs should be avoided when not needed for large scale id generation. Instead, for instance,
server side support with id generation can be preferred (POST on id resource, followed by
idempotent PUT on entity resource). Usage of UUIDs is especially discouraged as primary keys of

master and configuration data, like brand-ids or attribute-ids which have low id volume but
widespread steering functionality.

49

#post
#put

Please be aware that sequential, strictly monotonically increasing numeric identifiers may reveal
critical, confidential business information, like order volume, to non-privileged clients.

In any case, we should always use string rather than number type for identifiers. This gives us
more flexibility to evolve the identifier naming scheme. Accordingly, if used as identifiers, UUIDs
should not be qualified using a format property.

Hint: Usually, random UUID is used - see UUID version 4 in RFC 4122. Though UUID version 1 also
contains leading timestamps it is not reflected by its lexicographic sorting. This deficit is addressed
by ULID (Universally Unique Lexicographically Sortable Identifier). You may favour ULID instead of
UUID, for instance, for pagination use cases ordered along creation time.

3.12.11. SHOULD limit number of resource types

To keep maintenance and service evolution manageable, we should follow "functional
segmentation” and "separation of concern" design principles and do not mix different business
functionalities in same API definition. In practice this means that the number of resource types
exposed via an API should be limited. In this context a resource type is defined as a set of highly
related resources such as a collection, its members and any direct sub-resources.

For example, the resources below would be counted as three resource types, one for customers, one
for the addresses, and one for the customers' related addresses:

/customers

/customers/{id}
/customers/{id}/preferences
/customers/{id}/addresses
/customers/{id}/addresses/{addr}
/addresses

/addresses/{addr}

Note that:
* We consider /customers/id/preferences part of the /customers resource type because it has a
one-to-one relation to the customer without an additional identifier.

* We consider /customers and /customers/id/addresses as separate resource types because
/customers/id/addresses/{addr} also exists with an additional identifier for the address.

* We consider /addresses and /customers/id/addresses as separate resource types because there’s

no reliable way to be sure they are the same.

Given this definition, our experience is that well defined APIs involve no more than 4 to 8 resource
types. There may be exceptions with more complex business domains that require more resources,
but you should first check if you can split them into separate subdomains with distinct APIs.

Nevertheless one API should hold all necessary resources to model complete business processes
helping clients to understand these flows.

50

https://tools.ietf.org/html/rfc4122
https://github.com/alizain/ulid
#id
#id
#id
#id

3.12.12. SHOULD limit number of sub-resource levels

There are main resources (with root url paths) and sub-resources (or nested resources with non-
root urls paths). Use sub-resources if their life cycle is (loosely) coupled to the main resource, i.e. the
main resource works as collection resource of the subresource entities. You should use < 3 sub-
resource (nesting) levels —more levels increase API complexity and url path length. (Remember,
some popular web browsers do not support URLs of more than 2000 characters.)

3.13. Performance

3.13.1. SHOULD reduce bandwidth needs and improve responsiveness

APIs should support techniques for reducing bandwidth based on client needs. This holds for APIs
that (might) have high payloads and/or are used in high-traffic scenarios like the public Internet
and telecommunication networks. Typical examples are APIs used by mobile web app clients with
(often) less bandwidth connectivity.

Common techniques include:

» compression of request and response bodies (see SHOULD use gzip compression)

* querying field filters to retrieve a subset of resource attributes (see SHOULD support partial
responses via filtering below)

* ETag and If-Match/If-None-Match headers to avoid re-fetching of unchanged resources (see MAY
consider to support ETag together with If-Match/If-None-Match header)

* Prefer header with return=minimal or respond-async to anticipate reduced processing
requirements of clients (see MAY consider to support Prefer header to handle processing
preferences)

» Pagination for incremental access of larger collections of data items
» caching of master data items, i.e. resources that change rarely or not at all after creation (see

MUST document cachable GET, HEAD, and POST endpoints).

Each of these items is described in greater detail below.

3.13.2. SHOULD use gzip compression

Compress the payload of your APT’s responses with gzip, unless there’s a good reason not to — for
example, you are serving so many requests that the time to compress becomes a bottleneck. This
helps to transport data faster over the network (fewer bytes) and makes frontends respond faster.

Though gzip compression might be the default choice for server payload, the server should also
support payload without compression and its client control via Accept-Encoding request
header —see also RFC 7231 Section 5.3.4. The server should indicate used gzip compression via the
Content-Encoding header.

31

https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-3.1.2.2

3.13.3. SHOULD support partial responses via filtering

Depending on your use case and payload size, you can significantly reduce network bandwidth
need by supporting filtering of returned entity fields. Here, the client can explicitly determine the
subset of fields he wants to receive via the fields query parameter. (It is analogue to GraphQL
fields and simple queries, and also applied, for instance, for Google Cloud APT’s partial responses.)

3.13.3.1. Unfiltered

GET http://api.example.org/users/123 HTTP/1.1

HTTP/1.1 200 0K
Content-Type: application/json

{
"id": "cdddbed44-daed-11e5-8c01-63edbbab2dab",
"name": "John Doe",
"address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
"birthday": "1984-09-13",
"friends": [{
"id": "1fb43648-dael1-11e5-aa@1-1fbc3abb1cd0",
"name": "Jane Doe",
"address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
"birthday": "1988-04-07"
}
+

3.13.3.2. Filtered

GET http://api.example.org/users/123?fields=(name,friends(name)) HTTP/1.1

HTTP/1.1 200 0K
Content-Type: application/json

{
"name": "John Doe",
"friends": [{
"name": "Jane Doe"
}]
}

The fields query parameter determines the fields returned with the response payload object. For
instance, (name) returns users root object with only the name field, and (name, friends(name)) returns
the name and the nested friends object with only its name field.

Open API doesn’t support you in formally specifying different return object schemes depending on
a parameter. When you define the field parameter, we recommend to provide the following
description: "Endpoint supports filtering of return object fields as described in #157

32

#fields
https://graphql.org/learn/queries/#fields
https://graphql.org/learn/queries/#fields
https://cloud.google.com/storage/docs/json_api/v1/how-tos/performance#partial-response
#fields

The syntax of the query fields value is defined by the following BNF grammar.

<fields> ::= [<negation>] <fields_struct>
<fields_struct> si= "(" <field_items> ")"
<field_items> pi= <field> ["," <field_items>]
<field> ::= <field_name> | <fields_substruct>
<fields_substruct> ::= <field _name> <fields_struct>
<field_name> ::= <dash_letter_digit> [<field_name>]
<dash_letter_digit> ::= <dash> | <letter> | <digit>
<dash> s

<letter> B S R A - L IR B &
<digit> = "0 | ... | "9

<negation> = L

Note: Following the principle of least astonishment, you should not define the fields query
parameter using a default value, as the result is counter-intuitive and very likely not anticipated by
the consumer.

3.13.4. SHOULD allow optional embedding of sub-resources

Embedding related resources (also know as Resource expansion) is a great way to reduce the
number of requests. In cases where clients know upfront that they need some related resources
they can instruct the server to prefetch that data eagerly. Whether this is optimized on the server,
e.g. a database join, or done in a generic way, e.g. an HTTP proxy that transparently embeds
resources, is up to the implementation.

See MUST stick to conventional query parameters for naming, e.g. "embed" for steering of
embedded resource expansion. Please use the BNF grammar, as already defined above for filtering,
when it comes to an embedding query syntax.

Embedding a sub-resource can possibly look like this where an order resource has its order items
as sub-resource (/order/{orderId}/items):

GET /order/123?embed=(items) HTTP/1.1

{
"id": "123",
" embedded": {
"items": [
{
"position": 1,
"sku": "1234-ABCD-7890",
"price": {
"amount": 71.99,
"currency": "EUR"
}
}
]
}

33

#fields
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
#fields
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

3.13.5. MUST document cachable GET, HEAD, and POST endpoints

Caching has to take many aspects into account, e.g. general cacheability of response information,
our guideline to protect endpoints using SSL and OAuth authorization, resource update and
invalidation rules, existence of multiple consumer instances. As a consequence, caching is in best
case complex, e.g. with respect to consistency, in worst case inefficient.

As a consequence, client side as well as transparent web caching should be avoided, unless the
service supports and requires it to protect itself, e.g. in case of a heavily used and therefore rate
limited master data service, i.e. data items that rarely or not at all change after creation.

As default, API providers and consumers should always set the Cache-Control header set to Cache-
Control: no-store and assume the same setting, if no Cache-Control header is provided.

Note: There is no need to document this default setting. However, please make sure that your
framework is attaching this header value by default, or ensure this manually, e.g. using the best
practice of Spring Security as shown below. Any setup deviating from this default must be
sufficiently documented.

Cache-Control: no-cache, no-store, must-revalidate, max-age=0

If your service really requires to support caching, please observe the following rules:

* Document all cacheable GET, HEAD, and POST endpoints by declaring the support of Cache-Control,
Vary, and ETag headers in response. Note: you must not define the Expires header to prevent
redundant and ambiguous definition of cache lifetime. A sensible default documentation of
these headers is given below.

» Take care to specify the ability to support caching by defining the right caching boundaries, i.e.
time-to-live and cache constraints, by providing sensible values for Cache-Control and Vary in
your service. We will explain best practices below.

» Provide efficient methods to warm up and update caches, e.g. as follows:

o In general, you should support ETag Together With If-Match/ If-None-Match Header on all
cacheable endpoints.

o For larger data items support HEAD requests or more efficient GET requests with If-None-Match
header to check for updates.

o For small data sets provide full collection GET requests supporting ETag, as well as HEAD
requests or GET requests with If-None-Match to check for updates.

o For medium sized data sets provide full collection GET requests supporting ETag together
with Pagination and <entity-tag> filtering GET requests for limiting the response to changes
since the provided <entity-tag>. Note: this is not supported by generic client and proxy
caches on HTTP layer.

Hint: For proper cache support, you must return 304 without content on a failed HEAD or GET request

54

https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7234#section-5.2.2.2
https://tools.ietf.org/html/rfc7234#section-5.2.2.2
https://tools.ietf.org/html/rfc7234#section-5.2
#get
#head
#post
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7234#section-5.3
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
#head
#get
https://tools.ietf.org/html/rfc7232#section-3.2
#get
https://tools.ietf.org/html/rfc7232#section-2.3
#head
#get
https://tools.ietf.org/html/rfc7232#section-3.2
#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
#get
https://tools.ietf.org/html/rfc7232#section-2.3
#status-code-304
#head
#get

with If-None-Match: <entity-tag> instead of 412.

components:
headers:
- Cache-Control:
description: |

The RFC 7234 Cache-Control header field is providing directives to
control how proxies and clients are allowed to cache responses results
for performance. Clients and proxies are free to not support caching of
results, however if they do, they must obey all directives mentioned in
[RFC-7234 Section 5.2.2](https://tools.ietf.org/html/rfc7234) to the
word.

In case of caching, the directive provides the scope of the cache
entry, i.e. only for the original user (private) or shared between all
users (public), the lifetime of the cache entry in seconds (max-age),
and the strategy how to handle a stale cache entry (must-revalidate).
Please note, that the lifetime and validation directives for shared
caches are different (s-maxage, proxy-revalidate).

type: string
required: false
example: "private, must-revalidate, max-age=300"

- Vary:
description: |

The RFC 7231 Vary header field in a response defines which parts of
a request message, aside the target URL and HTTP method, might have
influenced the response. A client or proxy cache must respect this
information, to ensure that it delivers the correct cache entry (see
[RFC-7231 Section
7.1.4](https://tools.ietf.org/html/rfc7231#section-7.1.4)).

type: string
required: false
example: "accept-encoding, accept-language"

Hint: For ETag source see MAY consider to support ETag together with If-Match/If-None-Match
header.

The default setting for Cache-Control should contain the private directive for endpoints with
standard OAuth authorization, as well as the must-revalidate directive to ensure, that the client
does not use stale cache entries. Last, the max-age directive should be set to a value between a few
seconds (max-age=60) and a few hours (max-age=86400) depending on the change rate of your master
data and your requirements to keep clients consistent.

Cache-Control: private, must-revalidate, max-age=300

55

#status-code-412
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7234#section-5.2

The default setting for Vary is harder to determine correctly. It highly depends on the API endpoint,
e.g. whether it supports compression, accepts different media types, or requires other request
specific headers. To support correct caching you have to carefully choose the value. However, a
good first default may be:

Vary: accept, accept-encoding

Anyhow, this is only relevant, if you encourage clients to install generic HTTP layer client and proxy
caches.

Note: generic client and proxy caching on HTTP level is hard to configure. Therefore, we strongly
recommend to attach the (possibly distributed) cache directly to the service (or gateway) layer of
your application. This relieves from interpreting the Vary header and greatly simplifies interpreting
the Cache-Control and ETag headers. Moreover, is highly efficient with respect to caching
performance and overhead, and allows to support more advanced cache update and warm up
patterns.

Anyhow, please carefully read RFC 7234 before adding any client or proxy cache.

3.14. Hypermedia

3.14.1. MUST use REST maturity level 2

We strive for a good implementation of REST Maturity Level 2 as it enables us to build resource-
oriented APIs that make full use of HTTP verbs and status codes. You can see this expressed by
many rules throughout these guidelines, e.g.:

MUST avoid actions — think about resources

MUST keep URLs verb-free
* MUST use HTTP methods correctly
* MUST use standard HTTP status codes

Although this is not HATEOAS, it should not prevent you from designing proper link relationships
in your APISs as stated in rules below.

3.14.2. MAY use REST maturity level 3 - HATEOAS

We do not generally recommend to implement REST Maturity Level 3. HATEOAS comes with
additional API complexity without real value in our SOA context where client and server interact
via REST APIs and provide complex business functions as part of our e-commerce SaaS platform.

Our major concerns regarding the promised advantages of HATEOAS (see also RESTistential Crisis
over Hypermedia APIs, Why I Hate HATEOAS and others for a detailed discussion):

* We follow the API First principle with APIs explicitly defined outside the code with standard
specification language. HATEOAS does not really add value for SOA client engineers in terms of
API self-descriptiveness: a client engineer finds necessary links and usage description

36

https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7234
http://martinfowler.com/articles/richardsonMaturityModel.html#level2
http://martinfowler.com/articles/richardsonMaturityModel.html#level3
https://www.infoq.com/news/2014/03/rest-at-odds-with-web-apis
https://www.infoq.com/news/2014/03/rest-at-odds-with-web-apis
https://jeffknupp.com/blog/2014/06/03/why-i-hate-hateoas/

(depending on resource state) in the API reference definition anyway.

* Generic HATEOAS clients which need no prior knowledge about APIs and explore API
capabilities based on hypermedia information provided, is a theoretical concept that we haven’t
seen working in practice and does not fit to our SOA set-up. The Open API description format
(and tooling based on Open API) doesn’t provide sufficient support for HATEOAS either.

* In practice relevant HATEOAS approximations (e.g. following specifications like HAL or JSON
API) support API navigation by abstracting from URL endpoint and HTTP method aspects via
link types. So, Hypermedia does not prevent clients from required manual changes when
domain model changes over time.

* Hypermedia make sense for humans, less for SOA machine clients. We would expect use cases
where it may provide value more likely in the frontend and human facing service domain.

* Hypermedia does not prevent API clients to implement shortcuts and directly target resources
without 'discovering' them.

However, we do not forbid HATEOAS; you could use it, if you checked its limitations and still see
clear value for your usage scenario that justifies its additional complexity. If you use HATEOAS
please share experience and present your findings.

3.14.3. MUST use full, absolute URI
Links to other resource must always use full, absolute URI.

Motivation: Exposing any form of relative URI (no matter if the relative URI uses an absolute or
relative path) introduces avoidable client side complexity. It also requires clarity on the base URI,
which might not be given when using features like embedding subresources. The primary
advantage of non-absolute URI is reduction of the payload size, which is better achievable by
following the recommendation to use gzip compression

3.14.4. MUST use common hypertext controls

When embedding links to other resources into representations you must use the common hypertext
control object. It contains at least one attribute:

* href: The URI of the resource the hypertext control is linking to. All our API are using HTTP(s) as
URI scheme.

In API that contain any hypertext controls, the attribute name href is reserved for usage within
hypertext controls.

The schema for hypertext controls can be derived from this model:

HttpLink:
description: A base type of objects representing links to resources.
type: object
properties:
href:
description: Any URI that is using http or https protocol
type: string

57

#href
#href

format: uri
required:
- href

The name of an attribute holding such a HttpLink object specifies the relation between the object
that contains the link and the linked resource. Implementations should use names from the IANA
Link Relation Registry whenever appropriate. As IANA link relation names use hyphen-case
notation, while this guide enforces snake_case notation for attribute names, hyphens in IANA
names have to be replaced with underscores (e.g. the IANA link relation type version-history would
become the attribute version_history)

Specific link objects may extend the basic link type with additional attributes, to give additional
information related to the linked resource or the relationship between the source resource and the
linked one.

E.g. a service providing "Person" resources could model a person who is married with some other
person with a hypertext control that contains attributes which describe the other person (id, name)
but also the relationship "spouse"” between the two persons (since):

{
"id": "44619876-e89b-12d3-a456-426655440000",

"name": "Peter Mustermann",
"spouse": {
"href": "https://...",
"since": "1996-12-19",
"id": "123e4567-e89b-12d3-3456-426655440000",
"name": "Linda Mustermann"

Hypertext controls are allowed anywhere within a JSON model. While this specification would
allow HAL, we actually don’t recommend/enforce the usage of HAL anymore as the structural
separation of meta-data and data creates more harm than value to the understandability and
usability of an API.

3.14.5. SHOULD use simple hypertext controls for pagination and self-
references

For pagination and self-references a simplified form of the extensible common hypertext controls
should be used to reduce the specification and cognitive overhead. It consists of a simple URI value
in combination with the corresponding link relations, e.g. next, prev, first, last, or self.

See simple-hypertext-control-fields and SHOULD use pagination links where applicable for
examples and more information.

3.14.6. MUST not use link headers with JSON entities

For flexibility and precision, we prefer links to be directly embedded in the JSON payload instead of

38

http://www.iana.org/assignments/link-relations
http://www.iana.org/assignments/link-relations
http://stateless.co/hal_specification.html
http://www.iana.org/assignments/link-relations
#next
#prev
#first
#last
#self

being attached using the uncommon link header syntax. As a result, the use of the Link Header
defined by RFC 8288 in conjunction with JSON media types is forbidden.

3.15. Common headers

This section describes a handful of headers, which we found raised the most questions in our daily
usage, or which are useful in particular circumstances but not widely known.

3.15.1. MUST use Content-* headers correctly

Content or entity headers are headers with a Content- prefix. They describe the content of the body
of the message and they can be used in both, HTTP requests and responses. Commonly used content
headers include but are not limited to:

» Content-Disposition can indicate that the representation is supposed to be saved as a file, and
the proposed file name.

* Content-Encoding indicates compression or encryption algorithms applied to the content.

* Content-Length indicates the length of the content (in bytes).

* Content-Lanquage indicates that the body is meant for people literate in some human
language(s).

* Content-Location indicates where the body can be found otherwise (MAY use Content-Location
header for more details]).

» Content-Range is used in responses to range requests to indicate which part of the requested
resource representation is delivered with the body.

* Content-Type indicates the media type of the body content.

3.15.2. MAY use standardized headers

Use this list and mention its support in your Open API definition.

3.15.3. MAY use Content-Location header

The Content-Location header is optional and can be used in successful write operations (PUT, POST, or
PATCH) or read operations (GET, HEAD) to guide caching and signal a receiver the actual location of the
resource transmitted in the response body. This allows clients to identify the resource and to update
their local copy when receiving a response with this header.

The Content-Location header can be used to support the following use cases:

* For reading operations GET and HEAD, a different location than the requested URI can be used to
indicate that the returned resource is subject to content negotiations, and that the value
provides a more specific identifier of the resource.

* For writing operations PUT and PATCH, an identical location to the requested URI can be used to
explicitly indicate that the returned resource is the current representation of the newly created
or updated resource.

39

https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc8288#section-3
https://tools.ietf.org/html/rfc6266#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7233#section-4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
#put
#post
#patch
#get
#head
#get
#head
#put
#patch

» For writing operations POST and DELETE, a content location can be used to indicate that the body
contains a status report resource in response to the requested action, which is available at
provided location.

Note: When using the Content-Location header, the Content-Type header has to be set as well. For
example:

GET /products/123/images HTTP/1.1

HTTP/1.1 200 OK
Content-Type: image/png
Content-Location: /products/123/images?format=raw

3.15.4. SHOULD use Location header instead of Content-Location header

As the correct usage of Content-Location with respect to semantics and caching is difficult, we
discourage the use of Content-Location. In most cases it is sufficient to direct clients to the resource
location by using the Location header instead without hitting the Content-Location specific
ambiguities and complexities.

More details in RFC 7231 7.1.2 Location, 3.1.4.2 Content-Location

3.15.5. MAY consider to support Prefer header to handle processing
preferences

The Prefer header defined in RFC 7240 allows clients to request processing behaviors from servers.
It pre-defines a number of preferences and is extensible, to allow others to be defined. Support for
the Prefer header is entirely optional and at the discretion of API designers, but as an existing
Internet Standard, is recommended over defining proprietary "X-" headers for processing
directives.

The Prefer header can defined like this in an API definition:

components:
headers:
- Prefer:
description: >

The RFC7240 Prefer header indicates that a particular server behavior
is preferred by the client but is not required for successful completion
of the request (see [RFC 7240](https://tools.ietf.org/html/rfc7240).
The following behaviors are supported by this API:

(indicate the preferences supported by the API or API endpoint)

* **respond-async** is used to suggest the server to respond as fast as
possible asynchronously using 202 - accepted - instead of waiting for
the result.

* **return=<minimal|representation>** is used to suggest the server to
return using 204 without resource (minimal) or using 200 or 201 with

60

#post
#delete
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240

resource (representation) in the response body on success.

* **pait=<delta-seconds>** is used to suggest a maximum time the server
has time to process the request synchronously.

* **handling=<strict|lenient>** is used to suggest the server to be
strict and report error conditions or lenient, i.e. robust and try to
continue, if possible.

type: array
items:

type: string
required: false

Note: Please copy only the behaviors into your Prefer header specification that are supported by
your API endpoint. If necessary, specify different Prefer headers for each supported use case.

Supporting APIs may return the Preference-Applied header also defined in RFC 7240 to indicate
whether a preference has been applied.

3.15.6. MAY consider to support ETag together with If-Match/If-None-Match
header

When creating or updating resources it may be necessary to expose conflicts and to prevent the
lost update' or 'initially created' problem. Following RFC 7232 "HTTP: Conditional Requests" this
can be best accomplished by supporting the ETag header together with the If-Match or If-None-Match
conditional header. The contents of an ETag: <entity-tag> header is either (a) a hash of the
response body, (b) a hash of the last modified field of the entity, or (c) a version number or
identifier of the entity version.

To expose conflicts between concurrent update operations via PUT, POST, or PATCH, the If-Match:
<entity-tag> header can be used to force the server to check whether the version of the updated
entity is conforming to the requested <entity-tag>. If no matching entity is found, the operation is
supposed a to respond with status code 412 - precondition failed.

Beside other use cases, If-None-Match: * can be used in a similar way to expose conflicts in resource
creation. If any matching entity is found, the operation is supposed a to respond with status code
412 - precondition failed.

The ETag, If-Match, and If-None-Match headers can be defined as follows in the API definition:

components:
headers:
- ETag:
description: |

The RFC 7232 ETag header field in a response provides the entity-tag of
a selected resource. The entity-tag is an opaque identifier for versions
and representations of the same resource over time, regardless whether
multiple versions are valid at the same time. An entity-tag consists of
an opaque quoted string, possibly prefixed by a weakness indicator (see
[RFC 7232 Section 2.3](https://tools.ietf.org/html/rfc7232#section-2.3).

61

https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240#section-3
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2
#put
#post
#patch
https://tools.ietf.org/html/rfc7232#section-2.3
#status-code-412
#status-code-412
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2

type: string
required: false
example: W/"xy", "5", "5db68c06-1a68-11e9-8341-68f728c1ba70"

- If-Match:
description: |

The RFC7232 If-Match header field in a request requires the server to
only operate on the resource that matches at least one of the provided
entity-tags. This allows clients express a precondition that prevent
the method from being applied if there have been any changes to the
resource (see [RFC 7232 Section
3.1](https://tools.ietf.org/html/rfc7232#section-3.1).

type: string
required: false
example: "5", "7da7a728-f910-11e6-942a-68f728c1ba70"

- If-None-Match:
description: |
The RFC7232 If-None-Match header field in a request requires the server
to only operate on the resource if it does not match any of the provided
entity-tags. If the provided entity-tag is ‘*', it is required that the
resource does not exist at all (see [RFC 7232 Section
3.2](https://tools.ietf.org/html/rfc7232#section-3.2).

type: string
required: false
example: "7da7a728-f910-11e6-942a-68f728c1ba70", *

Please see Optimistic locking in RESTful APIs for a detailed discussion and options.

3.15.7. MAY consider to support Idempotency-Key header

When creating or updating resources it can be helpful or necessary to ensure a strong idempotent
behavior comprising same responses, to prevent duplicate execution in case of retries after timeout
and network outages. Generally, this can be achieved by sending a client specific unique request key
- that is not part of the resource — via Idempotency-Key header.

The unique request key is stored temporarily, e.g. for 24 hours, together with the response and the
request hash (optionally) of the first request in a key cache, regardless of whether it succeeded or
failed. The service can now look up the unique request key in the key cache and serve the response
from the key cache, instead of re-executing the request, to ensure idempotent behavior. Optionally,
it can check the request hash for consistency before serving the response. If the key is not in the key
store, the request is executed as usual and the response is stored in the key cache.

This allows clients to safely retry requests after timeouts, network outages, etc. while receive the
same response multiple times. Note: The request retry in this context requires to send the exact
same request, i.e. updates of the request that would change the result are off-limits. The request
hash in the key cache can protection against this misbehavior. The service is recommended to

62

#230

reject such a request using status code 400.

Important: To grant a reliable idempotent execution semantic, the resource and the key cache
have to be updated with hard transaction semantics — considering all potential pitfalls of failures,
timeouts, and concurrent requests in a distributed systems. This makes a correct implementation
exceeding the local context very hard.

The Idempotency-Key header must be defined as follows, but you are free to choose your expiration
time:

components:
headers:
- Idempotency-Key:
description: |
The idempotency key is a free identifier created by the client to
identify a request. It is used by the service to identify subsequent
retries of the same request and ensure idempotent behavior by sending
the same response without executing the request a second time.

Clients should be careful as any subsequent requests with the same key
may return the same response without further check. Therefore, it is
recommended to use an UUID version 4 (random) or any other random
string with enough entropy to avoid collisions.

Idempotency keys expire after 24 hours. Clients are responsible to stay
within this Tlimits, if they require idempotent behavior.

type: string

format: uuid

required: false

example: "7da7a728-f910-11e6-942a-68f728c1ba70"

Hint: The key cache is not intended as request log, and therefore should have a limited lifetime,
else it could easily exceed the data resource in size.

Note: The Idempotency-Key header unlike other headers in this section is not standardized in an
RFC. Our only reference are the usage in the Stripe API. However, as it fit not into our section about
Proprietary headers, and we did not want to change the header name and semantic, we decided to
treat it as any other common header.

3.16. Proprietary headers

This section shares definitions of proprietary headers that should be named consistently because
they address overarching service-related concerns. Whether services support these concerns or not
is optional; therefore, the Open API API specification is the right place to make this explicitly
visible. Use the parameter definitions of the resource HTTP methods.

63

#status-code-400
#230
#230
https://stripe.com/docs/api/idempotent_requests

3.16.1. MUST use only the specified proprietary Pon headers

As a general rule, proprietary HTTP headers should be avoided. Still they can be useful in cases
where context needs to be passed through multiple services in an end-to-end fashion. As such, a
valid use-case for a proprietary header is providing context information, which is not a part of the
actual API, but is needed by subsequent communication.

From a conceptual point of view, the semantics and intent of an operation should always be
expressed by URLs path and query parameters, the method, and the content. Headers are more
often used to implement functions close to the protocol considerations, such as flow control,
content negotiation, and authentication. Thus, headers are reserved for general context
information (RFC 7231).

X- headers were initially reserved for unstandardized parameters, but the usage of X- headers is
deprecated (RFC 6648). This complicates the contract definition between consumer and producer of
an API following these guidelines, since there is no aligned way of using those headers. Because of
this, the guidelines restrict which X- headers can be used and how they are used.

The Internet Engineering Task Force’s states in RFC 6648 that company specific header' names
should incorporate the organization’s name. We aim for backward compatibility, and therefore
keep the X- prefix.

The following proprietary headers have been specified by this guideline for usage so far.
Remember that HTTP header field names are not case-sensitive.

Header field Type Description Header field
name value
example
X-Flow-ID String For more information see MUST support X-Flow-1ID. GKY70DhpSi
KY_gAAAABZ
A
X-Tenant-ID String Identifies the tenant initiated the request to the multi 9f8b3ca3-
tenant Pon Platform. The X-Tenant-ID must be set 4he5-436¢-

according to the Business Partner ID extracted from the ag47-
OAuth token when a request from a Business Partner hits 9cd55460c495
the Pon Platform.

X-Sales- String Sales channels are owned by retailers and represent a 52b96501-
Channel specific consumer segment being addressed with a specific 0f8d-43e7-
product assortment that is offered via CFA retailer catalogs 82aa-
to consumers (see platform glossary (internal link)) 8a96fab134d7
X-Frontend- String Consumer facing applications (CFAs) provide business mobile-app
Type experience to their customers via different frontend

application types, for instance, mobile app or browser.
Info should be passed-through as generic aspect —there
are diverse concerns, e.g. pushing mobiles with specific
coupons, that make use of it. Current range is mobile-app,
browser, facebook-app, chat-app

64

https://tools.ietf.org/html/rfc7231#section-5
https://tools.ietf.org/html/rfc6648
https://tools.ietf.org/html/rfc6648
#x-flow-id
#x-tenant-id
#x-tenant-id
#x-sales-channel
#x-sales-channel
https://pages.github.bus.zalan.do/core-platform/docs/glossary/glossary.html
#x-frontend-type
#x-frontend-type

Header field Type Description Header field
name value
example

X-device-Type String There are also use cases for steering customer experience tablet
(incl. features and content) depending on device type. Via
this header info should be passed-through as generic
aspect. Current range is smartphone, tablet, desktop,
other.

X-device-0S String On top of device type above, we even want to differ Android
between device platform, e.g. smartphone Android vs. iOS.
Via this header info should be passed-through as generic
aspect. Current range is i0S, Android, Windows, Linux,

MacOS.
X-Mobile- String Itis either the IDFA (Apple Identifier for mobile b89fadce-
Advertising- Advertising) for iOS, or the GAID (Google mobile 1f42-46aa-
1D Advertising Identifier) for Android. It is a unique, 9c83-

customer-resettable identifier provided by mobile device’s b7bc49e76elf
operating system to faciliate personalized advertising, and

usually passed by mobile apps via http header when

calling backend services. Called services should be ready

to pass this parameter through when calling other

services. It is not sent if the customer disables it in the

settings for respective mobile platform.

Exception: The only exception to this guideline are the conventional hop-by-hop X-RatelLimit-
headers which can be used as defined in MUST use code 429 with headers for rate limits.

3.16.2. MUST propagate proprietary headers
All Pon’s proprietary headers are end-to-end headers. "”

All headers specified above must be propagated to the services down the call chain. The header
names and values must remain unchanged.

For example, the values of the custom headers like X-Device-Type can affect the results of queries by
using device type information to influence recommendation results. Besides, the values of the
custom headers can influence the results of the queries (e.g. the device type information influences
the recommendation results).

Sometimes the value of a proprietary header will be used as part of the entity in a subsequent
request. In such cases, the proprietary headers must still be propagated as headers with the
subsequent request, despite the duplication of information.

3.16.3. MUST support X-Flow-ID

The Flow-ID is a generic parameter to be passed through service APIs and events and written into
log files and traces. A consequent usage of the Flow-ID facilitates the tracking of call flows through

65

#x-device-type
#x-device-os
#x-mobile-advertising-id
#x-mobile-advertising-id
#x-mobile-advertising-id
https://developer.apple.com/documentation/adsupport/asidentifiermanager
https://support.google.com/googleplay/android-developer/answer/6048248

our system and allows the correlation of service activities initiated by a specific call. This is
extremely helpful for operational troubleshooting and log analysis. Main use case of Flow-ID is to
track service calls of our SaaS fashion commerce platform and initiated internal processing flows
(executed synchronously via APIs or asynchronously via published events).

3.16.3.1. Data Definition

The Flow-ID must be passed through:

» RESTful API requests via X-Flow-ID proprietary header (see MUST propagate proprietary
headers)

e Published events via flow_id event field (see metadata)

The following formats are allowed:

UUID (RFC-4122)

base64 (RFC-4648)

base64url (RFC-4648 Section 5)
* Random unique string restricted to the character set [a-zA-70-9/+_-=] maximal of 128

characters.

Note: If a legacy subsystem can only process Flow-IDs with a specific format or length, it must
define this restrictions in its API specification, and be generous and remove invalid characters or
cut the length to the supported limit.

Hint: In case distributed tracing is supported by OpenTracing (internal link) you should ensure that
created spans are tagged using flow_id — see How to Connect Log Output with OpenTracing Using
Flow-IDs (internal link) or Best practises (internal link).

3.16.3.2. Service Guidance

* Services must support Flow-ID as generic input, i.e.

o RESTful API endpoints must support X-Flow-ID header in requests

o Event listeners must support the metadata flow-id from events.
Note: API-Clients must provide Flow-ID when calling a service or producing events. If no Flow-
ID is provided in a request or event, the service must create a new Flow-ID.

» Services must propagate Flow-ID, i.e. use Flow-ID received with API-Calls or consumed events

as...

o input for all API called and events published during processing

o data field written for logging and tracing

Hint: This rule also applies to application internal interfaces and events not published via Nakadi
(but e.g. via AWS SQS, Kinesis or service specific DB solutions).

66

#x-flow-id
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648#section-5
https://github.bus.zalan.do/SRE/opentracing
https://github.bus.zalan.do/SRE/opentracing/blob/master/wg-semantic-conventions/best-practices/flowid.md
https://github.bus.zalan.do/SRE/opentracing/blob/master/wg-semantic-conventions/best-practices/flowid.md
https://github.bus.zalan.do/SRE/opentracing/blob/master/wg-semantic-conventions/best-practices.md
#x-flow-id

3.17. API Operation

3.17.1. MUST publish Open API specification

All service applications must publish Open API specifications of their external APIs. While this is
optional for internal APIs, i.e. APIs marked with the component-internal API audience group, we
still recommend to do so to profit from the API management infrastructure.

An API is published by copying its Open API specification into the reserved /pon-apis directory of
the deployment artifact used to deploy the provisioning service. The directory must only contain
self-contained YAML files that each describe one API (exception see (RFP) MUST only use durable
and immutable remote references). We prefer this deployment artifact-based method over the past
(now legacy) .well-known/schema-discovery service endpoint-based publishing process, that we only
support for backward compatibility reasons.

Background: In our dynamic and complex service infrastructure, it is important to provide API
client developers a central place with online access to the API specifications of all running
applications. As a part of the infrastructure, the API publishing process is used to detect API
specifications. The findings are published in the API Portal - the universal hub for all Pon APIs.

Note: To publish an API, it is still necessary to deploy the artifact successful, as we focus the
discovery experience on APIs supported by running services.

3.17.2. SHOULD monitor API usage

Owners of APIs used in production should monitor API service to get information about its using
clients. This information, for instance, is useful to identify potential review partner for API changes.

Hint: A preferred way of client detection implementation is by logging of the client-id retrieved
from the OAuth token.

3.18. Events

Pon’s architecture centers around decoupled microservices and in that context we favour
asynchronous event driven approaches. The guidelines in this section focus on how to design and
publish events intended to be shared for others to consume.

3.18.1. Events, event types, and categories

Events are defined using an item called an Event Type. The Event Type allows events to have their
structure declared with a schema by producers and understood by consumers. An Event Type
declares standard information, such as a name, an owning application (and by implication, an
owning team), a schema defining the event’s custom data, and a compatibility mode declaring how
the schema will be evolved. Event Types also allow the declaration of validation and enrichment
strategies for events, along with supplemental information such as how events can be partitioned
in an event stream.

Event Types belong to a well known Event Category (such as a data change category), which

67

provides extra information that is common to that kind of event.

Event Types can be published and made available as API resources for teams to use, typically in an
Event Type Registry. Each event published can then be validated against the overall structure of its
event type and the schema for its custom data.

The basic model described above was originally developed in the Nakadi project, which acts as a
reference implementation of the event type registry, and as a validating publish/subscribe broker
for event producers and consumers.

3.18.2. MUST treat events as part of the service interface

Events are part of a service’s interface to the outside world equivalent in standing to a service’s
REST API. Services publishing data for integration must treat their events as a first class design
concern, just as they would an API. For example this means approaching events with the "API first"
principle in mind as described in the Introduction.

3.18.3. MUST make event schema available for review

Services publishing event data for use by others must make the event schema as well as the event
type definition available for review.

3.18.4. MUST ensure event schema conforms to Open API schema object

To align the event schema specifications to API specifications, we use the Schema Object as defined
by the Open API Specifications to define event schemas. This is particularly useful for events that
represent data changes about resources also used in other APISs.

The Open API Schema Object is an extended subset of J[SON Schema Draft 4. For convenience, we
highlight some important differences below. Please refer to the Open API Schema Object
specification for details.

As the Open API Schema Object specification removes some JSON Schema keywords, the following
properties must not be used in event schemas:

additionalltems

* contains

* patternProperties
* dependencies

* propertyNames

* const

* not

* oneQf
On the other side Schema Object redefines some JSON Schema keywords:

* additionalProperties: For event types that declare compatibility guarantees, there are

68

https://github.com/zalando/nakadi
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schemaObject
http://json-schema.org/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schemaObject

recommended constraints around the use of this field. See the guideline SHOULD avoid
additionalProperties in event type definitions for details.

Finally, the Schema Object extends JSON Schema with some keywords:
* readOnly: events are logically immutable, so readOnly can be considered redundant, but
harmless.

» discriminator: to support polymorphism, as an alternative to one0f.

» \x-: patterned objects in the form of vendor extensions can be used in event type schema, but it
might be the case that general purpose validators do not understand them to enforce a
validation check, and fall back to must-ignore processing. A future version of the guidelines
may define well known vendor extensions for events.

3.18.5. MUST ensure that events are registered as event types

In Pon’s architecture, events are registered using a structure called an Event Type. The Event Type
declares standard information as follows:

A well known event category, such as a general or data change category.

* The name of the event type.

The definition of the event target audience.
* An owning application, and by implication, an owning team.
* A schema defining the event payload.

* The compatibility mode for the type.

Event Types allow easier discovery of event information and ensure that information is well-
structured, consistent, and can be validated.

Event type owners must pay attention to the choice of compatibility mode. The mode provides a
means to evolve the schema. The range of modes are designed to be flexible enough so that
producers can evolve schemas while not inadvertently breaking existing consumers:

* none: Any schema modification is accepted, even if it might break existing producers or
consumers. When validating events, undefined properties are accepted unless declared in the
schema.

» forward: A schema S1 is forward compatible if the previously registered schema, S0 can read
events defined by S1 - that is, consumers can read events tagged with the latest schema version
using the previous version as long as consumers follow the robustness principle described in
the guideline’s API design principles.

» compatible: This means changes are fully compatible. A new schema, S1, is fully compatible
when every event published since the first schema version will validate against the latest
schema. In compatible mode, only the addition of new optional properties and definitions to an
existing schema is allowed. Other changes are forbidden.

The compatibility mode interact with revision numbers in the schema version field, which follows
semantic versioning (MAJOR.MINOR.PATCH):

69

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#vendorExtensions

* Changing an event type with compatibility mode compatible can lead to a PATCH or MINOR
version revision. MAJOR breaking changes are not allowed.

* Changing an event type with compatibility mode forward can lead to a PATCH or MINOR version
revision. MAJOR breaking changes are not allowed.

* Changing an event type with compatibility mode none can lead to PATCH, MINOR or MAJOR level
changes.

The following examples illustrate this relations:

* Changes to the event type’s title or description are considered PATCH level.
* Adding new optional fields to an event type’s schema is considered a MINOR level change.

» All other changes are considered MAJOR level, such as renaming or removing fields, or adding
new required fields.

The core Event Type structure is shown below as an Open API object definition:

EventType:
description: |
An event type defines the schema and its runtime properties. The required
fields are the minimum set the creator of an event type is expected to
supply.
required:
- name
- category
- owning_application
- schema
properties:
name:
description: |
Name of this EventType. The name must follow the functional naming
pattern ‘<functional-name>.<event-name>' to preserve global
uniqueness and readability.
type: string
pattern: '[a-z][a-z0-9-]1*\.[3-z][a-2z0-9-]*'
example: |
transactions.order.order-cancelled
customer.personal-data.email-changed
audience:
type: string
x-extensible-enum:
- component-internal
- business-unit-internal
- company-internal
- external-partner
- external-public
description: |
Intended target audience of the event type, analogue to audience definition
for REST APIs
in rule #219 https://qgithub.com/PonDigitalSolutions/restful-api-quidelines

70

owning_application:
description: |
Name of the application (eg, as would be used in infrastructure
application or service registry) owning this ‘EventType".
type: string
example: price-service
category:
description: Defines the category of this EventType.
type: string
x-extensible-enum:
- data
- general
compatibility_mode:
description: |
The compatibility mode to evolve the schema.
type: string
x-extensible-enum:
- compatible
- forward
- none
default: forward
schema:
description: The most recent payload schema for this EventType.
type: object
properties:
version:

description: Values are based on semantic versioning (eg "1.2.1").

type: string
default: '1.0.0'
created_at:
description: Creation timestamp of the schema.
type: string
readOnly: true
format: date-time
example: '1996-12-19T16:39:57-08:00"
type:
description: |
The schema language of schema definition. Currently only
json_schema (JSON Schema v04) syntax is defined, but in the
future there could be others.
type: string
x-extensible-enum:
- json_schema
schema:
description: |

The schema as string in the syntax defined in the field type.

type: string
required:
- type
- schema
ordering_key_fields:

71

72

type: array

description: |
Indicates which field is used for application level ordering of events.
It is typically a single field, but also multiple fields for compound
ordering key are supported (first item is most significant).

This is an informational only event type attribute for specification of
application level ordering. Nakadi transportation layer is not affected,
where events are delivered to consumers in the order they were published.

Scope of the ordering is all events (of all partitions), unless it is
restricted to data instance scope in combination with
‘ordering_instance_ids' attribute below.

This field can be modified at any moment, but event type owners are
expected to notify consumer in advance about the change.

Background: Event ordering is often created on application level using
ascending counters, and data providers/consumers do not need to rely on the
event publication order. A typical example are data instance change events
used to keep a slave data store replica in sync. Here you have an order
defined per instance using data object change counters (aka row update
version) and the order of event publication is not relevant, because
consumers for data synchronization skip older instance versions when they
reconstruct the data object replica state.

items:
type: string
description: |

Indicates a single ordering field. This is a JsonPointer, which is applied
onto the whole event object, including the contained metadata and data (in
case of a data change event) objects. It must point to a field of type
string or number/integer (as for those the ordering is obvious).

Indicates a single ordering field. It is a simple path (dot separated) to
the JSON leaf element of the whole event object, including the contained
metadata and data (in
case of a data change event) objects. It must point to a field of type
string or number/integer (as for those the ordering is obvious), and must be
present in the schema.
example: "data.order_change_counter"
ordering_instance_ids:
type: array
description: |
Indicates which field represents the data instance identifier and scope in
which ordering_key_fields provides a strict order. It is typically a single
field, but multiple fields for compound identifier keys are also supported.

This is an informational only event type attribute without specific Nakadi
semantics for specification of application level ordering. It only can be
used in combination with ‘ordering_key_fields".

This field can be modified at any moment, but event type owners are expected
to notify consumer in advance about the change.
items:
type: string
description: |
Indicates a single key field. It is a simple path (dot separated) to the
JSON
leaf element of the whole event object, including the contained metadata and
data (in case of a data change event) objects, and it must be present in the
schema.
example: "data.order_number"
created_at:
description: When this event type was created.
type: string
pattern: date-time
updated_at:
description: When this event type was last updated.
type: string
pattern: date-time

APIs such as registries supporting event types, may extend the model, including the set of
supported categories and schema formats. For example the Nakadi API’s event category registration
also allows the declaration of validation and enrichment strategies for events, along with
supplemental information, such as how events are partitioned in the stream (see SHOULD use the
hash partition strategy for data change events).

3.18.6. MUST ensure that events conform to a well-known event category

An event category describes a generic class of event types. The guidelines define two such
categories:

* General Event: a general purpose category.

* Data Change Event: a category used for describing changes to data entities used for data
replication based data integration.

The set of categories is expected to evolve in the future.

A category describes a predefined structure that event publishers must conform to along with
standard information about that kind of event (such as the operation for a data change event).

3.18.6.1. The general event category
The structure of the General Event Category is shown below as an Open API Schema Object

definition:

GeneralEvent:
description: |
A general kind of event. Event kinds based on this event define their

73

custom schema payload as the top level of the document, with the
"metadata"” field being required and reserved for standard metadata. An
instance of an event based on the event type thus conforms to both the
EventMetadata definition and the custom schema definition. Previously
this category was called the Business Category.

required:
- metadata

properties:
metadata:

$ref: '"#/definitions/EventMetadata’

Event types based on the General Event Category define their custom schema payload at the top-
level of the document, with the metadata field being reserved for standard information (the
contents of metadata are described further down in this section).

In the example fragment below, the reserved metadata field is shown with fields "a" and "b" being
defined as part of the custom schema:

Note:

* The General Event in a previous version of the guidelines was called a Business Event.
Implementation experience has shown that the category’s structure gets used for other kinds of
events, hence the name has been generalized to reflect how teams are using it.

* The General Event is still useful and recommended for the purpose of defining events that drive
a business process.

» The Nakadi broker still refers to the General Category as the Business Category and uses the
keyword "business" for event type registration. Other than that, the JSON structures are
identical.

See MUST use the general event category to signal steps and arrival points in business processes for
more guidance on how to use the category.

3.18.6.2. The data change event category

The Data Change Event Category structure is shown below as an Open API Schema Object:

DataChangeEvent:

description: |
Represents a change to an entity. The required fields are those
expected to be sent by the producer, other fields may be added
by intermediaries such as a publish/subscribe broker. An instance
of an event based on the event type conforms to both the
DataChangeEvent's definition and the custom schema definition.

required:
- metadata
- data_op
- data_type
- data

properties:

74

metadata:
description: The metadata for this event.
$ref: '"#/definitions/EventMetadata’
data:
description: |
Contains custom payload for the event type. The payload must conform
to a schema associated with the event type declared in the metadata
object's ‘event_type' field.
type: object
data_type:
description: name of the (business) data entity that has been mutated
type: string
example: 'sales_order.order'
data_op:
type: string
enum: ['C', 'U', 'D', 'S"]
description: |
The type of operation executed on the entity:

: Creation of an entity

: An update to an entity.

: Deletion of an entity.

: A snapshot of an entity at a point in time.

1
nv O C M

The Data Change Event Category is structurally different to the General Event Category. It defines a
field called data for placing the custom payload information, as well as specific information related
to data changes in the data_type. In the example fragment below, the fields a and b are part of the
custom payload housed inside the data field:

See the following guidelines for more guidance on how to use the Data Change Event Category:

* SHOULD ensure that data change events match the APIs resources
* MUST use data change events to signal mutations

* SHOULD use the hash partition strategy for data change events

3.18.6.3. Event metadata

The General and Data Change event categories share a common structure for metadata. The
metadata structure is shown below as an Open API Schema Object:

EventMetadata:

type: object

description: |
Carries metadata for an Event along with common fields. The required
fields are those expected to be sent by the producer, other fields may be
added by intermediaries such as publish/subscribe broker.

required:
- eid
- occurred_at

75

76

properties:
eid:
description: Identifier of this event.
type: string
format: uuid
example: '105a76d8-db49-4144-ace7-e683e8f4badb’
event_type:
description: The name of the EventType of this Event.
type: string
example: 'example.important-business-event'
occurred_at:
description: When the event was created according to the producer.
type: string
format: date-time
example: '1996-12-19T716:39:57-08:00'
received_at:
description: |
When the event was seen by an intermediary such as a broker.
type: string
readOnly: true
format: date-time
example: '1996-12-19T716:39:57-08:00'
version:
description: |
Version of the schema used for validating this event. This may be
enriched upon reception by intermediaries. This string uses semantic
versioning.
type: string
readOnly: true
parent_eids:
description: |
Event identifiers of the Event that caused the generation of
this Event. Set by the producer.
type: array
items:
type: string
format: uuid
example: '105376d8-db49-4144-ace7-e683e8f4bad6’
flow_id:
description: |
A flow-id for this event (corresponds to the X-Flow-Id HTTP header).
type: string
example: 'JAh6xH40QhCJ9PutIV_RYw'
partition:
description: |
Indicates the partition assigned to this Event. Used for systems
where an event type's events can be sub-divided into partitions.
type: string
example: '0'

Please note than intermediaries acting between the producer of an event and its ultimate
consumers, may perform operations like validation of events and enrichment of an event’s
metadata. For example brokers such as Nakadi, can validate and enrich events with arbitrary
additional fields that are not specified here and may set default or other values, if some of the
specified fields are not supplied. How such systems work is outside the scope of these guidelines
but producers and consumers working with such systems should look into their documentation for
additional information.

3.18.7. MUST ensure that events define useful business resources

Events are intended to be used by other services including business process/data analytics and
monitoring. They should be based around the resources and business processes you have defined
for your service domain and adhere to its natural lifecycle (see also SHOULD model complete
business processes and SHOULD define useful resources).

As there is a cost in creating an explosion of event types and topics, prefer to define event types that
are abstract/generic enough to be valuable for multiple use cases, and avoid publishing event types
without a clear need.

3.18.8. MUST ensure that events do not provide sensitive data

Similar to API permission scopes, there will be event type permissions passed via an OAuth token
supported in near future. In the meantime, teams are asked to note the following:

» Sensitive data, such as (e-mail addresses, phone numbers, etc) are subject to strict access and
data protection controls.

* Event type owners must not publish sensitive information unless it’s mandatory or necessary
to do so. For example, events sometimes need to provide personal data, such as delivery
addresses in shipment orders (as do other APIs), and this is fine.

3.18.9. MUST use the general event category to signal steps and arrival
points in business processes

When publishing events that represent steps in a business process, event types must be based on
the General Event category.

All your events of a single business process will conform to the following rules:
* Business events must contain a specific identifier field (a business process id or "bp-id") similar

to flow-id to allow for efficient aggregation of all events in a business process execution.

* Business events must contain a means to correctly order events in a business process execution.
In distributed settings where monotonically increasing values (such as a high precision
timestamp that is assured to move forwards) cannot be obtained, the parent_eids data structure
allows causal relationships to be declared between events.

* Business events should only contain information that is new to the business process execution
at the specific step/arrival point.

* Each business process sequence should be started by a business event containing all relevant

77

context information.
* Business events must be published reliably by the service.
At the moment we cannot state whether it’s best practice to publish all the events for a business
process using a single event type and represent the specific steps with a state field, or whether to

use multiple event types to represent each step. For now we suggest assessing each option and
sticking to one for a given business process.

3.18.10. MUST use data change events to signal mutations

When publishing events that represents created, updated, or deleted data, change event types must
be based on the Data Change Event category.

* Change events must identify the changed entity to allow aggregation of all related events for the
entity.
* Change events SHOULD provide means for explicit event ordering.

* Change events must be published reliably by the service.

3.18.11. SHOULD provide means for explicit event ordering

Some common error cases may require event consumers to reconstruct event streams or replay
events from a position within the stream. Events should therefore contain a way to restore their
partial order of occurrence.

This can be done — among other ways - by adding

* a strictly monotonically increasing entity version (e.g. as created by a database) to allow for
partial ordering of all events for an entity, or
* a strictly monotonically increasing message counter.

In the event type definition, the ordering_key_fields property should be used to indicate which
field(s) contains the ordering key, if any.

System timestamps are not necessarily a good choice, since exact synchronization of clocks in
distributed systems is difficult, two events may occur in the same microsecond and system clocks
may jump backward or forward to compensate drifts or leap-seconds. If you use system timestamps
to indicate event ordering, you must carefully ensure that your designated event order is not
messed up by these effects.

Also, if using timestamps, the producer must make sure that they are formatted for all events in the
UTC time zone, to allow for a simple string-based comparison.

Note that basing events on data structures that can be converged upon in a distributed setting
(such as CRDTs, logical clocks and vector clocks) is outside the scope of this guidance.

3.18.12. SHOULD use the hash partition strategy for data change events

The hash partition strategy allows a producer to define which fields in an event are used as input to

78

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Logical_clock
https://en.wikipedia.org/wiki/Vector_clock

compute a logical partition the event should be added to. Partitions are useful as they allow
supporting systems to scale their throughput while provide local ordering for event entities.

The hash option is particulary useful for data changes as it allows all related events for an entity to
be consistently assigned to a partition, providing a relative ordered stream of events for that entity.
This is because while each partition has a total ordering, ordering across partitions is not assured
by a supporting system, thus it is possible for events sent across partitions to appear in a different
order to consumers that the order they arrived at the server.

When using the hash strategy the partition key in almost all cases should represent the entity being
changed and not a per event or change identifier such as the eid field or a timestamp. This ensures
data changes arrive at the same partition for a given entity and can be consumed effectively by
clients.

There may be exceptional cases where data change events could have their partition strategy set to
be the producer defined or random options, but generally hash is the right option - that is while the
guidelines here are a "should", they can be read as "must, unless you have a very good reason".

3.18.13. SHOULD ensure that data change events match the APIs resources

A data change event’s representation of an entity should correspond to the REST API
representation.

There’s value in having the fewest number of published structures for a service. Consumers of the
service will be working with fewer representations, and the service owners will have less API
surface to maintain. In particular, you should only publish events that are interesting in the
domain and abstract away from implementation or local details - there’s no need to reflect every
change that happens within your system.

There are cases where it could make sense to define data change events that don’t directly
correspond to your API resource representations. Some examples are -

* Where the API resource representations are very different from the datastore representation,
but the physical data are easier to reliably process for data integration.

* Publishing aggregated data. For example a data change to an individual entity might cause an
event to be published that contains a coarser representation than that defined for an API

* Events that are the result of a computation, such as a matching algorithm, or the generation of
enriched data, and which might not be stored as entity by the service.

3.18.14. MUST indicate ownership of event types

Event definitions must have clear ownership - this can be indicated via the owning_application field
of the EventType.

Typically there is one producer application, which owns the EventType and is responsible for its
definition, akin to how RESTful API definitions are managed. However, the owner may also be a
particular service from a set of multiple services that are producing the same kind of event.

79

3.18.15. MUST define event payloads compliant with overall API guidelines

Events must be consistent with other API data and the API Guidelines in general.

Everything expressed in the Introduction to these Guidelines is applicable to event data
interchange between services. This is because our events, just like our APIs, represent a
commitment to express what our systems do and designing high-quality, useful events allows us to
develop new and interesting products and services.

What distinguishes events from other kinds of data is the delivery style used, asynchronous
publish-subscribe messaging. But there is no reason why they could not be made available using a
REST API for example via a search request or as a paginated feed, and it will be common to base
events on the models created for the service’s REST APIL

The following existing guideline sections are applicable to events:

* General guidelines
* API naming

» Data formats

¢ Common data types

* Hypermedia

3.18.16. MUST maintain backwards compatibility for events

Changes to events must be based around making additive and backward compatible changes. This
follows the guideline, "Must: Don’t Break Backward Compatibility" from the Compatibility
guidelines.

In the context of events, compatibility issues are complicated by the fact that producers and
consumers of events are highly asynchronous and can’t use content-negotiation techniques that are
available to REST style clients and servers. This places a higher bar on producers to maintain
compatibility as they will not be in a position to serve versioned media types on demand.

For event schema, these are considered backward compatible changes, as seen by consumers -

* Adding new optional fields to JSON objects.

* Changing the order of fields (field order in objects is arbitrary).
* Changing the order of values with same type in an array.

* Removing optional fields.

* Removing an individual value from an enumeration.
These are considered backwards-incompatible changes, as seen by consumers -

* Removing required fields from JSON objects.
* Changing the default value of a field.

* Changing the type of a field, object, enum or array.

80

* Changing the order of values with different type in an array (also known as a tuple).

* Adding a new optional field to redefine the meaning of an existing field (also known as a co-
occurrence constraint).

* Adding a value to an enumeration (note that x-extensible-enum is not available in JSON Schema)

3.18.17. SHOULD avoid additionalProperties in event type definitions

Event type schema should avoid using additionalProperties declarations, in order to support
schema evolution.

Events are often intermediated by publish/subscribe systems and are commonly captured in logs or
long term storage to be read later. In particular, the schemas used by publishers and consumers can
drift over time. As a result, compatibility and extensibility issues that happen less frequently with
client-server style APIs become important and regular considerations for event design. The
guidelines recommend the following to enable event schema evolution:

» Publishers who intend to provide compatibility and allow their schemas to evolve safely over
time must not declare an additionalProperties field with a value of true (i.e., a wildcard
extension point). Instead they must define new optional fields and update their schemas in
advance of publishing those fields.

* Consumers must ignore fields they cannot process and not raise errors. This can happen if they
are processing events with an older copy of the event schema than the one containing the new
definitions specified by the publishers.

The above constraint does not mean fields can never be added in future revisions of an event type
schema - additive compatible changes are allowed, only that the new schema for an event type
must define the field first before it is published within an event. By the same turn the consumer
must ignore fields it does not know about from its copy of the schema, just as they would as an API
client - that is, they cannot treat the absence of an additionalProperties field as though the event
type schema was closed for extension.

Requiring event publishers to define their fields ahead of publishing avoids the problem of field
redefinition. This is when a publisher defines a field to be of a different type that was already being
emitted, or, is changing the type of an undefined field. Both of these are prevented by not using
additionalProperties.

See also rule 111 in the Compatibility section for further guidelines on the wuse of
additionalProperties.

3.18.18. MUST use unique event identifiers

The eid (event identifier) value of an event must be unique.

The eid property is part of the standard metadata for an event and gives the event an identifier.
Producing clients must generate this value when sending an event and it must be guaranteed to be
unique from the perspective of the owning application. In particular events within a given event
type’s stream must have unique identifiers. This allows consumers to process the eid to assert the
event is unique and use it as an idempotency check.

81

Note that uniqueness checking of the eid might be not enforced by systems consuming events and it
is the responsibility of the producer to ensure event identifiers do in fact distinctly identify events.
A straightforward way to create a unique identifier for an event is to generate a UUID value.

3.18.19. SHOULD design for idempotent out-of-order processing

Events that are designed for idempotent out-of-order processing allow for extremely resilient
systems: If processing an event fails, consumers and producers can skip/delay/retry it without
stopping the world or corrupting the processing result.

To enable this freedom of processing, you must explicitly design for idempotent out-of-order
processing: Either your events must contain enough information to infer their original order
during consumption or your domain must be designed in a way that order becomes irrelevant.

As common example similar to data change events, idempotent out-of-order processing can be
supported by sending the following information:

* the process/resource/entity identifier,

* a monotonically increasing ordering key and

* the process/resource state after the change.
A receiver that is interested in the current state can then ignore events that are older than the last

processed event of each resource. A receiver interested in the history of a resource can use the
ordering key to recreate a (partially) ordered sequence of events.

3.18.20. MUST follow naming convention for event type names

Event type names must (or should, see MUST/SHOULD use functional naming schema for details
and definition) conform to the functional naming depending on the audience as follows:

<event-type-name> <functional-event-name> | <application-event-name>

<functional-name>.<event-name>

<functional-event-name> ::

<event-name> [a-z][3-2z0-9-]* -- free event name (functional name)

The following application specific legacy convention is only allowed for internal event type names:

<application-event-name> ::= [<organization-id>.]<application-id>.<event-name>
<organization-id> ::= [a-z][a-z0-9-]* -- organization identifier, e.g. team
identifier

<application-id> ::= [a-z][a-z0-9-]* -- application identifier

Note: consistent naming should be used whenever the same entity is exposed by a data change
event and a RESTful APL

82

3.18.21. MUST prepare event consumers for duplicate events
Event consumers must be able to process duplicate events.

Most message brokers and data streaming systems offer "at-least-once" delivery. That is, one
particular event is delivered to the consumers one or more times. Other circumstances can also
cause duplicate events.

For example, these situations occur if the publisher sends an event and doesn’t receive the
acknowledgment (e.g. due to a network issue). In this case, the publisher will try to send the same
event again. This leads to two identical events in the event bus which have to be processed by the
consumers. Similar conditions can appear on consumer side: an event has been processed
successfully, but the consumer fails to confirm the processing.

Appendix A: Tooling

This is not a part of the actual guidelines, but might be helpful for following them. Using a tool
mentioned here doesn’t automatically ensure you follow the guidelines.

3.A.1. API first integrations

The following frameworks were specifically designed to support the API First workflow with Open
API YAML files (sorted alphabetically):

» Swagger Codegen: template-driven engine to generate client code in different languages by
parsing Swagger Resource Declaration

The Swagger/Open API homepage lists more Community-Driven Language Integrations, but most of
them do not fit our API First approach.

3.A.2. Support libraries

These utility libraries support you in implementing various parts of our RESTful API guidelines
(sorted alphabetically):

Appendix B: Best practices

The best practices presented in this section are not part of the actual guidelines, but should provide
guidance for common challenges we face when implementing RESTful APIs.

3.B.1. Optimistic locking in RESTful APIs

3.B.1.1. Introduction

Optimistic locking might be used to avoid concurrent writes on the same entity, which might cause
data loss. A client always has to retrieve a copy of an entity first and specifically update this one. If
another version has been created in the meantime, the update should fail. In order to make this
work, the client has to provide some kind of version reference, which is checked by the service,
before the update is executed. Please read the more detailed description on how to update

83

https://github.com/swagger-api/swagger-codegen
http://swagger.io/open-source-integrations/

resources via PUT in the HTTP Requests Section.

A RESTful API usually includes some kind of search endpoint, which will then return a list of result
entities. There are several ways to implement optimistic locking in combination with search
endpoints which, depending on the approach chosen, might lead to performing additional requests
to get the current version of the entity that should be updated.

3.B.1.2. ETag with If-Match header

An ETag can only be obtained by performing a GET request on the single entity resource before the
update, i.e. when using a search endpoint an additional request is necessary.

Example:

< GET /orders

> HTTP/1.1 200 0K

> {

> "items": [

> { "id": "00000042" 1},
> { "id": "00000043" }
>]

> }

< GET /orders/B00000042

> HTTP/1.1 200 0K

> ETag: osjnfkjbnkq3jlnksjnvkjlsbf

> { "id": "B00000042", ... }

< PUT /orders/00000042

< If-Match: osjnfkjbnkg3jlnksjnvkjlsbf
< { "id": "0O0000042", ... }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

> HTTP/1.1 412 Precondition failed

Pros

e RESTful solution

Cons

* Many additional requests are necessary to build a meaningful front-end

84

#put
https://tools.ietf.org/html/rfc7232#section-2.3
#get
#get
https://tools.ietf.org/html/rfc7232#section-2.3

3.B.1.3. ETags in result entities

The ETag for every entity is returned as an additional property of that entity. In a response
containing multiple entities, every entity will then have a distinct ETag that can be used in
subsequent PUT requests.

In this solution, the etag property should be readonly and never be expected in the PUT request
payload.

Example:

< GET /orders

> HTTP/1.1 200 OK

> {

> "jtems": [

> { "id": "00000042", "etag": "osjnfkjbnkq3jlnksjnvkjlsbf", "foo": 42, "bar": true
1

> { "id": "00000043", "etag": "kjshdfknjqlowjdsljdnfkjbkn", "foo": 24, "bar":
false }

>]

>}

< PUT /orders/00000042
< If-Match: osjnfkjbnkg3jlnksjnvkjlsbf
< { "id": "00000042", "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

Or, if there was an update since the GET and the entity’s ETag has changed:

> HTTP/1.1 412 Precondition failed

Pros

* Perfect optimistic locking

Cons

 Information that only belongs in the HTTP header is part of the business objects

3.B.1.4. Version numbers

The entities contain a property with a version number. When an update is performed, this version
number is given back to the service as part of the payload. The service performs a check on that
version number to make sure it was not incremented since the consumer got the resource and
performs the update, incrementing the version number.

Since this operation implies a modification of the resource by the service, a POST operation on the

85

https://tools.ietf.org/html/rfc7232#section-2.3
#put
#put
#get
https://tools.ietf.org/html/rfc7232#section-2.3
#post

exact resource (e.g. POST /orders/00000042) should be used instead of a PUT.

In this solution, the version property is not readonly since it is provided at POST time as part of the
payload.

Example:
< GET /orders
> HTTP/1.1 200 0K
> {
> "items": [
> { "id": "00000042", "version": 1, "foo": 42, "bar": true },
> { "id": "00000043", "version": 42, "foo": 24, "bar": false }
>]
> }

< POST /orders/00000042
< { "id": "00000042", "version": 1, "foo": 43, "bar": true }

> HTTP/1.1 204 No Content

or if there was an update since the GET and the version number in the database is higher than the
one given in the request body:

> HTTP/1.1 409 Conflict

Pros

* Perfect optimistic locking

Cons

» Functionality that belongs into the HTTP header becomes part of the business object

» Using POST instead of PUT for an update logic (not a problem in itself, but may feel unusual for
the consumer)

3.B.1.5. Last-Modified / If-Unmodified-Since

In HTTP 1.0 there was no ETag and the mechanism used for optimistic locking was based on a date.
This is still part of the HTTP protocol and can be used. Every response contains a Last-Modified
header with a HTTP date. When requesting an update using a PUT request, the client has to provide
this value via the header If-Unmodified-Since. The server rejects the request, if the last modified
date of the entity is after the given date in the header.

This effectively catches any situations where a change that happened between GET and PUT would be
overwritten. In the case of multiple result entities, the Last-Modified header will be set to the latest
date of all the entities. This ensures that any change to any of the entities that happens between GET

86

#put
#post
#get
#post
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.2
#put
https://tools.ietf.org/html/rfc7232#section-3.4
#get
#put
https://tools.ietf.org/html/rfc7232#section-2.2
#get

and PUT will be detectable, without locking the rest of the batch as well.

Example:

GET /orders

N

HTTP/1.1 200 OK
Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT
{
"items": [
{ "id": "000e0e0042", ... },
{ "id": "00000043", ... }
]

V V V V V V V V

}

PUT /block/00000042
If-Unmodified-Since: Wed, 22 Jul 2009 19:15:56 GMT
{ "id": "00000042", ... }

N NN

HTTP/1.1 204 No Content

\Y4

Or, if there was an update since the GET and the entities last modified is later than the given date:

> HTTP/1.1 412 Precondition failed

Pros

» Well established approach that has been working for a long time
* No interference with the business objects; the locking is done via HTTP headers only
* Very easy to implement

* No additional request needed when updating an entity of a search endpoint result

Cons

* If a client communicates with two different instances and their clocks are not perfectly in sync,
the locking could potentially fail

3.B.1.6. Conclusion

We suggest to either use the ETag in result entities or Last-Modified /If-Unmodified-Since approach.

4. Development guidelines

4.1. General development guidelines

87

#put
#get
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7232#section-3.4

Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

— M. Fowler (1999)

4.1.1. Introduction

This chapter is about coding, developing or anything related to using a programming language to
solve a problem.

As programmers, we collect, organize, maintain, and harness knowledge.
We document knowledge in specifications, we make it come alive in
running code, and we use it to provide the checks needed during testing.

— Pragmatic Programmer, Page 61

A problem is defined as a resolution for a challenge the business is facing. The mission of a coder is
to write ”good”, ”clean” and ”secure” code. These terms are ill-defined.

At Pon we consider code "good”, ”clean” and ”secure” based on the following rule of thumb

How much effort is required”" for another developer of comparable experience to

o pick up where the previous developer left off to fix, enhance or build upon the
source code - without involving the former developer”” and taking into account
the lifetime, quality, security and the business impact™® of the application.

There is a clear relationship between the amount of bugs in the code and the development effort
required, needlessly complex illogical code will in itself be a source of new bugs. Moreover clear
documentation and requirements from the business are the only solid foundation for software
development.

The following chapters will further explain the intricacies of this rule.

4.1.2. Rules and definitions

Rules and definition used in the development guidelines.

4.1.3. Definition: code quality

» Software functional quality reflects how well it complies with or
conforms to a given design, based on functional requirements or
specifications. That attribute can also be described as the fitness for
purpose of a piece of software or how it compares to competitors in the
marketplace as a worthwhile product. It is the degree to which the
correct software was produced.

88

» Software structural quality refers to how it meets non-functional
requirements that support the delivery of the functional requirements,
such as robustness or maintainability. It has a lot more to do with the
degree to which the software works as needed.

— Wikipedia

4.1.4. Coding rule: logical structured code

Refers to “How much effort”.

The amount of effort required for a change should be on-par with the apparent complexity of the
change.

A logical structure, both for files and in the code itself, is essential. This also applies to the layout of
the code itself, for example indents.

Updating an IP address
Updating the IP address of the database; small apparent complexity, small effort

(f) required.

Good code will result in a single place to be updated. Clean code will result in easy
to find code to be updated.

Code layout

o Code layout may differ greatly between projects, but within the same project all
files strictly adhere to the same code layout standards. Automated tools based on
accepted code style standards are essential for enforcement.

4.1.5. Coding rule: code is simple and concise
Refers to “How much effort”.

Code is simple and concise in order to increase the readability [praeng], rule 4 [nasa-safety-code].
Increasing performance by sacrificing readability is only an option if the performance increase is
in-line with the business requirements.

Rule: No function should be longer than what can be printed on a single
sheet of paper in a standard reference format with one line per statement
and one line per declaration. Typically, this means no more than about 60
lines of code per function.

Rationale: Each function should be a logical unit in the code that is
understandable and verifiable as a unit. It is much harder to understand a
logical unit that spans multiple screens on a computer display or multiple

89

https://en.wikipedia.org/wiki/Software_quality

pages when printed. Excessively long functions are often a sign of poorly
structured code.

— Nasa coding rules, Rule 4

Simple and concise

Based on the experience level of the developer simple and concise can easily shift

o to unreadable and complex. Code should not be overly simplified in order for all to
understand, it is up to the lead developer to guide and train the less experienced
developers in writing and understanding simple and concise code.

4.1.6. Coding rule: do not repeat yourself (DRY)

Refers to "How much effort".

Don’t repeat yourself (DRY, or sometimes do not repeat yourself) is a
principle of software development aimed at reducing repetition of software
patterns, replacing it with abstractions or using data normalization to avoid
redundancy.

The DRY principle is stated as "Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system". The principle
has been formulated by Andy Hunt and Dave Thomas in their book The
Pragmatic Programmer. They apply it quite broadly to include "database
schemas, test plans, the build system, even documentation”. When the DRY
principle is applied successfully, a modification of any single element of a
system does not require a change in other logically unrelated elements.
Additionally, elements that are logically related all change predictably and
uniformly, and are thus kept in sync.

— Wikipedia
Or, simply put:

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

— Pragmatic Programmer, Page 62

However keep in mind that if two distinct pieces of knowledge result in the same code the DRY
principle should be reviewed carefully as shown in [accidental-doppelganger]

o The once and only once rule is one of the most fundamental principles of software

development, it can be seen as a hallmark of good and clean code and will greatly
reduce developer effort when applied correctly. But it is not the goal of software

90

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

development; the goal is resolving challenges of the business under their
conditions.

Ref: https://gtramontina.com/posts/do-repeat-yourself.html

4.1.7. Coding rule: code and code changes are self-explanatory
Refers to “without involving the previous developer”.

All code is sufficiently documented in order to reduce the effort” required for updates and
changes. Comments must explain the why, not the how [praeng].

* Code changes are documented and should contain a reference to an issue tracking system

* Deviation from guidelines is always documented

When readability is sacrificed for performance” it is reflected in the comments.

Remember: while comments are very important, the best code is self-documenting.
Giving sensible names to types and variables is much better than using obscure
o names that you must then explain through comments

Ref: [googleStyleguideCpp], #Comments

4.1.8. Coding rule: solution design steps are template-based

Refers to “taking into account the lifetime, quality, security and business impact”.
Solution design comes first, coding second. The solution design must address the following

» Software lifetime
* Required quality
* Required security
* Business impact
4.1.9. Coding rule: code quality is known

Based on the quality as discussed in the solution design steps the code quality must be known.

This rule does not state that code must be fully automatically tested and scoring 100/100 on quality.
This rule states that the quality, as agreed upon beforehand with the business, is known and
documented.

4.1.10. Coding rule: cyclomatic complexity is low
Refers to “How much effort”.

Keep the number of conditional statements to a minimum; rule 1 of [nasa-safety-codel].

91

https://gtramontina.com/posts/do-repeat-yourself.html

The cyclomatic complexity of a section of source code is the number of
linearly independent paths within it—where "linearly independent” means
that each path has at least one edge that is not in one of the other paths. For
instance, if the source code contained no control flow statements
(conditionals or decision points), the complexity would be 1, since there
would be only a single path through the code. If the code had one single-
condition IF statement, there would be two paths through the code: one
where the IF statement evaluates to TRUE and another one where it
evaluates to FALSE, so the complexity would be 2. Two nested single-
condition IFs, or one IF with two conditions, would produce a complexity of
3.

— Wikipedia

Only use an else statement if required. Prefer a switch statement over multiple if-then-else
constructs.

4.2. File structure and naming

4.2.1. (RFP) MUST add comment to file

Each source file is self explanatory and must contain comments showing at least the following
» Purpose of the file in a concise description

¢ Author of the file

4.2.2. (RFP) MUST filenames are either CamelCase or snake case

Filenames

4.3. Version control

4.3.1. MUST use enterprise account

All commissioned code is intellectual property and must be stored in a Pon-managed source code
repository, preferably in the Pon-maintained Github environment. Use of personal accounts to store
and version code that is intellectual property is strictly prohibited.

4.3.2. MUST use review guidelines for version control

All code must be reviewed according to documented and approved guidelines. Relates to Coding
rule: logical structured code.

92

https://en.wikipedia.org/wiki/Cyclomatic_complexity

4.3.2.1. Review guidelines

 Start reviewing only if the author approved the pull request (PR) and the pipeline passed the
linting and automated tests.

* A review will always result in either an approved or declined PR.
* A declined PR must be recreated, preferably by the author, when issues have been addressed.

* Write comments in a clear, concise, constructive and unambiguous manner as described in
Coding rule: code and code changes are self-explanatory.

4.4. Testing code

4.4.1. MUST use automated linter based on approved style template

The linter configuration is selected from the solution architecture repository.

4.4.2. MUST use automated tests based on approved testing template

Code changes must be covered by automated tests. When choosing how to cover your changes, pick
the most lightweight (execution time wise) test type that will provide sufficient coverage. If you
encounter an existing test that insufficiently covers your changes, you can delete that test but you
must write a proper test to replace it. For example, a method that interacts with database has a unit
test. You can replace it with an integration test.

Be aware that while high-level tests may provide coverage to code, it is only indirect coverage. Tests
with more direct usage of the changed code will likely still needs to be written to ensure that
regardless of the which components are actually used in the black box, the individual components
still have coverage.

These tests must test the concrete implementation’s behavior in a way that can not be inadvertently
changed outside of the test itself.

4.5. Monitoring & logging

Logging and monitoring is essential for software, they business should always be able to confirm
software is functioning correctly.

4.5.1. SHOULD use dedicated logging library and logging levels

Logging directly to the console or command line is not recommended; it reduces the effectivess of
debugging, monitoring and checking the operational status of the software. It increases the security
risk because it is challenging to detect if senstive data is being logged.

To effectively use the library logging levels (DEBUG, ERROR, NOTICE) should be used.

4.6. Development environment

Which tools are required for a developer to be at peak efficiency?

93

TODO : https://github.com/pondigitalsolutions/restful-api-guidelines/issues/16

4.7. Development background

This chapter further explores what it is to be a developer, it does not contain guidelines or
standards per-se but it can be of guidance for developers.

PP 25
Apollo / NASA

https://fermatslibrary.com/s/apollo-11-implementation-of-trigonometric-functions

4.8. Date and time handling

This chapter handles the date and the time guidelines, including time intervals and durations.

4.8.1. (RFP) MUST use RFC 3339 for time and date encoding

The international standard RFC-3339 must be used for time and date encoding unless not feasible
due to technical constraints.

4.8.2. (RFP) MUST date time manipulation must be handled by a library

Date and time manipulation is very complex and involves many one-offs, and thus very error-
prone. Date and time manipulation must be handled by a dedicated library, which is available for
all main development languages.

4.8.3. SHOULD define time durations and intervals properties conform to
RFC 3339

Schema-based JSON properties that are by design durations and intervals could be strings
formatted as recommended by RFC-3339 (Appendix A of RFC 3339 contains a grammar for
durations).

Appendix C: Pon Standard Style
Pon standard style can be applied when linters are not available.

Based on [standard]s], [googleStyleguide]s], [phpStandards], [nasa-safety-code] and [gnu-coding-
standards].

JavaScript: PonStandard

4.C.1. MUST encapsulate body of if or else

JS

94

https://github.com/pondigitalsolutions/restful-api-guidelines/issues/16
https://fermatslibrary.com/s/apollo-11-implementation-of-trigonometric-functions
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339#appendix-A
https://github.com/pondevelopment/ponstandard/packages/1290139

The body of an if or else must be encapsulated it increases readability and decreases the
introduction of bugs.

For single-line statements a ternary is preferred.

4.C.1.1. Example 1

if (a < b)
test(c)
load(b)

if (a < b)
//test(c)
load(b)

Commenting out one line for debugging purposes resulted in the addition of a new bug, this can
easily be avoid by using curly braces:

if (a <b) {
test(c)

}
load(b)

if (a <b) {
//test(c)

}
load(b)

4.C.2. SHOULD order if statements by increased complexity

If using if statements where the conditionals are related, they should be ordered by increased
complexity when possible. Using this ordering will significantly improve readability.

4.C.2.1. Example 1

if (!'invoicePaid && !email) {
sendInvoiceByMail();

} else if (invoicePaid) {
closeOrder();

}

By swapping the if statements the logic is more comfortable to follow:

if (invoicePaid) {
closeOrder();
} else if (!invoicePaid && !email) {

95

sendInvoiceByMail();
}

4.C.3. MUST use special quotes only to reduce complexity

JS Php’

In most programming languages several options are available for the quoting of text, in the
following examples Javascript style quoting is used which is applicable to a variety of other
programming languages.

For the following examples the key question is: can the readbility be improved to make the code
more simple and concise?

4.C.3.1. Example 1

text = "The quick brown fox jumped over the lazy dog"

Although the code is correct the double quotes have have no additional function, the following code
is more concise by using single quotes:

text = 'The quick brown fox jumped over the lazy dog'

4.C.3.2. Example 2

text = "The quick brown \"fox\" jumped over the lazy dog"

The code is correct, but readability is improved by switching to single quotes:

text = 'The quick brown "fox" jumped over the lazy dog'

4.C.3.3. References

[googleStyleguide]s], Use single quotes

[standard]s], Use single quotes for strings

* Rules and definitions, Coding rule: logical structured code

Rules and definitions, Coding rule: code is simple and concise

4.C.4. SHOULD never use tabs for indentation

o

Tabs are hould never be used for indentation. A notable exception is Go where tabs are a language
default.

96

https://google.github.io/styleguide/jsguide.html#features-strings-use-single-quotes

4.C.4.1. References

* [googleStyleguide]s], whitespace characters (2)

[standard]s], Tabs should not be used

[phpStandards], indenting

Rules and definitions, Coding rule: logical structured code

Rules and definitions, Coding rule: code is simple and concise

4.C.5. MUST use predefined spacing for indentation

o

Using predefined spacing for indentation results in clear readable code without sacrificing too
much screen real estate; SHOULD never use tabs for indentation.

When using multiple languages a single project it is preferred to use the same indent for all
languages involved.

4.C.5.1. References

* [googleStyleguide]s], whitespace characters (2)
* [standard]s], Use 2 spaces for indentation
* [phpStandards], indenting

* Rules and definitions, Coding rule: logical structured code

4.C.6. SHOULD check return types of non-void functions

o

Return values of functions should not be ignored, especially if error return values must be
propagated up the function call chain. By checking return types exception justification is enforced,
which will result in increased code stability.

4.C.7. References

* [nasa-safety-code], Rule 7

4.C.8. SHOULD check the validity of parameters inside each function

o

Input parameters should not be assumed to be valid; by checking the validity code stability is
increased.

4.C.8.1. Example 1

// Lodash - startsWith.js - https://github.com/1lodash/1lodash

97

https://google.github.io/styleguide/jsguide.html#whitespace-characters
https://www.php-fig.org/psr/psr-12/#24-indenting
https://google.github.io/styleguide/jsguide.html#whitespace-characters
https://www.php-fig.org/psr/psr-12/#24-indenting

function startsWith(string, target, position) {
const { length } = string
position = position == null ? @ : position
if (position < 0) {
position = 0
}
else if (position > length) {
position = length
}
target = ‘${target}’
return string.slice(position, position + target.length) == target

Note the majority of the code in example 1 is about checking the input parameters.

4.C.8.2. References

* [nasa-safety-code], Rule 7

* The Robustness Principle

4.C.9. MUST not have unused variables

@

All variables are in use, unused variables have no function and are cluttering the code.

4.C.9.1. References

* [standard]s], No unused variables

* Rules and definitions, Coding rule: logical structured code

4.C.10. SHOULD use < or > instead of <= or >=

©

Using < is preferred over using <=, using > is preferred over using >=. It improves readability and
performance of code.

4.C.11. SHOULD use != instead of > or < when only a single value results in
false

o

If a return value always results in true except for a single value using != is preferred over using > or
>=,

4.C.11.1. Example 1
lanquages = ['NL', 'FR', 'BE'I];

98

http://en.wikipedia.org/wiki/Robustness_principle

if (languages.indexOf('BE"') >= 0)

The code is correct, but readability is reduced by using the >=, especially since the return of the
indexOf function is counterintuitive, a more readable solution is:

languages = ['NL", 'FR', 'BE'];

if (languages.indexOf('BE') != -1)

Appendix D: Pon Standard Style - Go
Patron(s) 0 Dennis Verweij

dennis.verweij@pon.com

4.D.1. MUST for linting we use golangci-lint in our CI/CD system

In our IDE and CI flow we use golangci-lint as linter. Follow the installation steps for you system.
Golangci-lint has integrations with various CI systems and IDE’s. golangci-lint runs the most
important code checks by default. In our CI/CD the default lint settings of golangci-lint are
mandatory.

4.D.1.1. Example linter implementation in Git Actions

gacheck:
name: Run go tests
runs-on: ubuntu-latest
steps:
- name: Set up Go 1.x
uses: actions/setup-go@v2
with:
go-version: 71.13
id: go
- name: Check out code into the Go module directory
uses: actions/checkout@v?
- name: golangci-lint
uses: golangci/golangci-lint-action@v1
with:
version: v1.29

4.D.2. SHOULD go Vet is used to check go code for correctness in the

development process

We preferably configure our IDE to run go Vet on every save operation.

99

mailto:dennis.verweij@pon.com
https://golangci-lint.run/usage/install/
https://golangci-lint.run/usage/integrations/
https://golangci-lint.run/usage/linters/

4.D.3. MUST go Vet is used to check go code for correctness in the build
pipeline

No code may be build without a code check. This is done by default when rule 270 is applied.

4.D.4. MUST use tabs for indentation in Go

Unlike the development guidelines for other languages in Go we use tabs for indentation. To
improve formatting of code we use gofmt to automatically format go code in de IDE.

4.D.5. MUST use gofmt in the IDE and CI pipeline for automatic formatting

In Go you don’t worry about formatting yourself and use gofmt for automatic formating. Gofmt
directions are leading. GOFMT must part of the CI pipeline and is best used in the IDE on the "save"
action.

4.D.6. {SHALL} every function is commented

In Go exported functions must be commented and is enforced by linting. Comments on unexported
functions are not enforced by linting, but improve readablity of the code. See rule 297 for comment
syntaxes.

4.D.7. MUST single line multiple declarations are not used

For readability only one variable is declared in a single line

4.D.7.1. Example 1 Invalid declaration

var valid, found, required bool

4.D.7.2. Example 2 Valid declaration

var valid bool
var found bool
var required bool

4.D.8. MUST global variables are not used

Global variables can cause al kinds of bugs in your code and result in poor readability and difficult
debugging. It is hard to keep track of where the value is modified and will cause race conditions
when used in combination with concurrency. Another problem with global variables is that it can
cause conflicts when importing packages. When either the package itself or the imported packages
has global variables they are available in the other.

4.D.8.1. Exception

There is only one valid reason to use global vars and that is for rule 299 when it concerns

100

unitialized variables, but only when they are never initialized, modified and you are aware of the
risks of conflict with imported packages. Rule of thumb is: You don’t use global vars when your
package is to be imported.

4.D.9. MUST variables and constants have explicitly declared types

When declaring a variable or a constant the type is explicitly declared. This avoids problems with
int, int64 etc.

4.D.9.1. Invalid declaration

const constant1 = "value of the constant"

4.D.9.2. Valid declaration

const constant1 string = "value of the constant"

4.D.10. SHOULD use unitialized variables to check for zero-values

An uninitialized variable has the zero value for the declared type. This can be used to check if a
variable is zero valued in an absolute and readable manner. These unitialized variabled can be
used as global vars to avoid recursion, but be aware of the risks of global vars as stated in rule 300.
This is an exception to rule

4.D.10.1. Avoid

if value == "" {
// do something
}

4.D.10.2. Desired check

var empty string // this will always be a zero valued string and could be global
var zero int // this will always be a zero valued int and could be global

if someStringVariable == empty {
// do something

}

if someIntegerVariable == zero {
// do something

¥

101

4.D.11. MUST we do not try and catch exceptions. Errors are values and we
handle errors

In some languages try/catch statements are used. Go does not have that method and we do not try
to mimic it. Instead we handle the errors and the errors are just values. You need to assess the
value and act upon it.

4.D.12. MUST errors are handle only once.

We handle errors only once.

4.D.12.1. Don’t do

Double logs for the same error.

func doSomething(val string) (string, error){
// Do something with val that results in a doneValue and an error value
if err = nil {
log.Error(err)
return doneValue,err
}
return doneValue, nil

}

func something(){
val := "some stuff"
result, err := doSomething(val)
if err = nil {
log.Error(err)
// Handle the error

4.D.12.2. Better

func doSomething(val string) (string, error){
// Do something with val that results in a doneValue and an error value
return doneValue, err

}

func something() {
val := "some stuff"
result, err := doSomething(val)
if err != nil {
log.Error(err)
// Handle the error

102

4.D.12.3. We can also include the stacktrace in the logging

The package github.com/pkg/errors gives more options than the default errors package. You can log
the stacktrace.

import (
"github.com/pkg/errors"
log "github.com/sirupsen/logrus”
)
func doSomething(val string) (string, error){
// Do something with val that results in a doneValue and an error value
return doneValue, err

}

func something() {
val := "some stuff"
result, err := doSomething(val)
if err != nil {
log.Errorf("%+v", err)
// Handle the error

4.D.13. SHOULD add context to errors when they are meaningless in the
context of the (final) receiver.

When errors are passed it might eventualy be unclear what the origin of the error is. You can pass
context to it, but be carefull with fmt.Errorf(), because that will override the initial error with just a
string.

4.D.13.1. Passing through context of the error with fmt.Errorf()

Using fmt.ErrorF() overwrites the error and returns just a string. Sometimes it’s just fine, but be
aware of the consequences

import (
log "github.com/sirupsen/logrus”
)
func doSomething(val string) (string, error){
// Do something with val that results in a doneValue and an error value
if err = nil {
err = fmt.Errorf("Something whent wrong processing %s: %v

, val, err)

}

return doneValue, err

}

func something() {
val := "some stuff"
result, err := doSomething(val)

103

if err != nil {
log.Errorf("%+v", err)
// Handle the error

This will return : overwritten error: test The stacktrace is gone

4.D.13.2. Better — Passing through context of the error with errors.Wrap() from the
"github.com/pkg/errors" package

Using errors.Wrap() adds your context to the error stack

import (
"github.com/pkg/errors"
log "github.com/sirupsen/logrus”
)
func doSomething(val string) (string, error){
// Do something with val that results in a doneValue and an error value
if err = nil {
err = errors.Wrap(err, "Something whent wrong processing")

}

return doneValue, err

}

func something() {
val := "some stuff"
result, err := doSomething(val)
if err 1= nil {
log.Errorf("%+v", err)
// Handle the error

4.D.14. {SHALL} Documenting comments are always written in the
idiomatic syntax.

The idiomatic syntax for writting comments in go is the // syntax for single line and multi line
comments in code. The reason for this is readability. Anyone can spot comment lines instantly even
when an IDE is not used. The comment syntax should be followed by a space for readabilty.

4.D.14.1. Example multi line comments

// ServiceRequest is used by the core to send a service specification

// to the plugin.

// Credentials will be supplied by the core on each ServiceRequest for the

// plugin to perform configurations on the target platform. The Plugin must not
// save the credentials, because it can be changed at random and the transport

104

// layer must use proper encryption so data can not be read in-flight. The data is
baseb4

// encoded. The plugin 1is responsible for being able to read the credentials for
// the specific platform.

type ServiceRequest struct {

MetaData metavibetal.MetaData ‘json:",inline""
Credentials string ‘json:"credentials"’

Type eventsvibetal.EventType ‘json:"type"*

Service json.RawMessage ‘json:"service""
LinkedService json.RawMessage ‘json:"linkedService"®
DependentService json.RawMessage ‘json:"dependendService""

We can also use inline comments, but they are not preferred.

type LogType string

const (

DEPLOY string = "deploy"

BUILD string = "build" // This is a very special LogType that needs specific
comments

INITIALIZE string = "initialize"

CLONE string = "clone_repo"
)

Go also supports the block comment syntax of /*...*/ but is not used inside and between code blocks.
A block syntax can be used for the package comment, but only above the package clause at the start
of the file (effective go # commentary).
4.D.14.2. Do not use stars or other formatting in comments

/**

* Stars or any other formating are not used in comments.

* There is also no need to worry about allignment. gofmt takes care of that
*/

Appendix E: Pon Standard Style - Magento

Patron(s) 0 ?

Appendix F: Pon Standard Style - WordPress

Patron(s) 0 Roy van der Loo

105

https://golang.org/doc/effective_go#commentary

5. Networking

5.1. HTTP requests

5.1.1. MUST use HTTP methods correctly

Be compliant with the standardized HTTP method semantics summarized as follows:

5.1.1.1. GET

GET requests are used to read either a single or a collection resource.

* GET requests for individual resources will usually generate a 404 if the resource does not exist

* GET requests for collection resources may return either 200 (if the collection is empty) or 404 (if
the collection is missing)

* GET requests must NOT have a request body payload (see GET With Body)

Note: GET requests on collection resources should provide sufficient filter and Pagination
mechanisms.

5.1.1.2. GET with body

APIs sometimes face the problem, that they have to provide extensive structured request
information with GET, that may conflict with the size limits of clients, load-balancers, and servers.
As we require APIs to be standard conform (body in GET must be ignored on server side), API
designers have to check the following two options:

1. GET with URL encoded query parameters: when it is possible to encode the request information
in query parameters, respecting the usual size limits of clients, gateways, and servers, this
should be the first choice. The request information can either be provided via multiple query
parameters or by a single structured URL encoded string.

2. POST with body content: when a GET with URL encoded query parameters is not possible, a POST
with body content must be used. In this case the endpoint must be documented with the hint GET
With Body to transport the GET semantic of this call.

Note: It is no option to encode the lengthy structured request information using header
parameters. From a conceptual point of view, the semantic of an operation should always be
expressed by the resource names, as well as the involved path and query parameters. In other
words by everything that goes into the URL. Request headers are reserved for general context
information (see MUST use only the specified proprietary Pon headers). In addition, size limits on
query parameters and headers are not reliable and depend on clients, gateways, server, and actual
settings. Thus, switching to headers does not solve the original problem.

Hint: As GET With Body is used to transport extensive query parameters, the cursor cannot any
longer be used to encode the query filters in case of cursor-based pagination. As a consequence, it is
best practice to transport the query filters in the body, while using pagination links containing the
cursor that is only encoding the page position and direction. To protect the pagination sequence the

106

#get
#get
#status-code-404
#get
#status-code-200
#status-code-404
#get
#get-with-body
#get
#get
#get
#get
#post
#get
#post
#get-with-body
#get-with-body
#get
#get-with-body
#cursor
#cursor

cursor may contain a hash over all applied query filters (See also SHOULD use pagination links
where applicable).

5.1.1.3. PUT

PUT requests are used to update (in rare cases to create) entire resources — single or collection
resources. The semantic is best described as "please put the enclosed representation at the resource
mentioned by the URL, replacing any existing resource.".

* PUT requests are usually applied to single resources, and not to collection resources, as this
would imply replacing the entire collection

* PUT requests are usually robust against non-existence of resources by implicitly creating before
updating

 on successful PUT requests, the server will replace the entire resource addressed by the URL
with the representation passed in the payload (subsequent reads will deliver the same payload)

* successful PUT requests will usually generate 200 or 204 (if the resource was updated — with or
without actual content returned), and 201 (if the resource was created)

Important: It is best practice to prefer POST over PUT for creation of (at least top-level) resources.
This leaves the resource ID under control of the service and allows to concentrate on the update
semantic using PUT as follows.

Note: In the rare cases where PUT is although used for resource creation, the resource IDs are
maintained by the client and passed as a URL path segment. Putting the same resource twice is
required to be idempotent and to result in the same single resource instance (see MUST fulfill
common method properties).

Hint: To prevent unnoticed concurrent updates and duplicate creations when using PUT, you MAY
consider to support ETag together with If-Match/If-None-Match header to allow the server to react on
stricter demands that expose conflicts and prevent lost updates. See also Optimistic locking in
RESTful APIs for details and options.

5.1.1.4. POST

POST requests are idiomatically used to create single resources on a collection resource endpoint,
but other semantics on single resources endpoint are equally possible. The semantic for collection
endpoints is best described as "please add the enclosed representation to the collection resource
identified by the URL".

* on a successful POST request, the server will create one or multiple new resources and provide
their URI/URLSs in the response

* successful POST requests will usually generate 200 (if resources have been updated), 201 (if
resources have been created), 202 (if the request was accepted but has not been finished yet),
and exceptionally 204 with Location header (if the actual resource is not returned).

The semantic for single resource endpoints is best described as "please execute the given well
specified request on the resource identified by the URL".

107

#cursor
#put
#put
#put
#put
#put
#status-code-200
#status-code-204
#status-code-201
#post
#put
#put
#put
#put
#post
#post
#post
#status-code-200
#status-code-201
#status-code-202
#status-code-204
https://tools.ietf.org/html/rfc7231#section-7.1.2

Generally: POST should be used for scenarios that cannot be covered by the other methods
sufficiently. In such cases, make sure to document the fact that POST is used as a workaround (see
GET With Body).

Note: Resource IDs with respect to POST requests are created and maintained by server and
returned with response payload.

Hint: Posting the same resource twice is not required to be idempotent (check MUST fulfill
common method properties) and may result in multiple resources. However, you SHOULD
consider to design POST and PATCH idempotent to prevent this.

5.1.1.5. PATCH

PATCH requests are used to update parts of single resources, i.e. where only a specific subset of
resource fields should be replaced. The semantic is best described as "please change the resource
identified by the URL according to my change request”. The semantic of the change request is not
defined in the HTTP standard and must be described in the API specification by using suitable
media types.

* PATCH requests are usually applied to single resources as patching entire collection is challenging
* PATCH requests are usually not robust against non-existence of resource instances

* on successful PATCH requests, the server will update parts of the resource addressed by the URL
as defined by the change request in the payload

* successful PATCH requests will usually generate 200 or 204 (if resources have been updated with
or without updated content returned)

Note: since implementing PATCH correctly is a bit tricky, we strongly suggest to choose one and only
one of the following patterns per endpoint, unless forced by a backwards compatible change. In
preference order:

1. use PUT with complete objects to update a resource as long as feasible (i.e. do not use PATCH at
all).

2. use PATCH with partial objects to only update parts of a resource, whenever possible. (This is
basically JSON Merge Patch, a specialized media type application/merge-patch+json that is a
partial resource representation.)

3. use PATCH with JSON Patch, a specialized media type application/json-patch+json that includes
instructions on how to change the resource.

4. use POST (with a proper description of what is happening) instead of PATCH, if the request does
not modify the resource in a way defined by the semantics of the media type.

In practice JSON Merge Patch quickly turns out to be too limited, especially when trying to update
single objects in large collections (as part of the resource). In this cases JSON Patch can shown its
full power while still showing readable patch requests (see also J[SON patch vs. merge).

Note: Patching the same resource twice is not required to be idempotent (check MUST fulfill
common method properties) and may result in a changing result. However, you SHOULD consider
to design POST and PATCH idempotent to prevent this.

108

#post
#post
#get-with-body
#post
#patch
#patch
#patch
#patch
#patch
#status-code-200
#status-code-204
#patch
#put
#patch
#patch
https://tools.ietf.org/html/rfc7396
#patch
https://tools.ietf.org/html/rfc6902
#post
#patch
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc6902
http://erosb.github.io/post/json-patch-vs-merge-patch

Hint: To prevent unnoticed concurrent updates when using PATCH you MAY consider to support
ETag together with If-Match/If-None-Match header to allow the server to react on stricter demands
that expose conflicts and prevent lost updates. See Optimistic locking in RESTful APIs and SHOULD
consider to design POST and PATCH idempotent for details and options.

5.1.1.6. DELETE

DELETE requests are used to delete resources. The semantic is best described as "please delete the
resource identified by the URL".

* DELETE requests are usually applied to single resources, not on collection resources, as this
would imply deleting the entire collection

* successful DELETE requests will usually generate 200 (if the deleted resource is returned) or 204
(if no content is returned)

» failed DELETE requests will usually generate 404 (if the resource cannot be found) or 410 (if the
resource was already deleted before)

Important: After deleting a resource with DELETE, a GET request on the resource is expected to either
return 404 (not found) or 410 (gone) depending on how the resource is represented after deletion.
Under no circumstances the resource must be accessible after this operation on its endpoint.

5.1.1.7. HEAD

HEAD requests are used to retrieve the header information of single resources and resource
collections.

» HEAD has exactly the same semantics as GET, but returns headers only, no body.

Hint: HEAD is particular useful to efficiently lookup whether large resources or collection resources
have been updated in conjunction with the ETag-header.

5.1.1.8. OPTIONS

OPTIONS requests are used to inspect the available operations (HTTP methods) of a given endpoint.

* OPTIONS responses usually either return a comma separated list of methods in the Allow header
or as a structured list of link templates

Note: OPTIONS is rarely implemented, though it could be used to self-describe the full functionality
of a resource.

5.1.2. MUST fulfill common method properties
Request methods in RESTful services can be...

* safe - the operation semantic is defined to be read-only, meaning it must not have intended side
effects, i.e. changes, to the server state.

» idempotent - the operation has the same intended effect on the server state, independently
whether it is executed once or multiple times. Note: this does not require that the operation is

109

#patch
#delete
#delete
#delete
#status-code-200
#status-code-204
#delete
#status-code-404
#status-code-410
#delete
#get
#status-code-404
#status-code-410
#head
#head
#get
#head
https://tools.ietf.org/html/rfc7232#section-2.3
#options
#options
#options
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2

returning the same response or status code.

cacheable - to indicate that responses are allowed to be stored for future reuse. In general,
requests to safe methods are cachable, if it does not require a current or authoritative response
from the server.

Note: The above definitions, of intended (side) effect allows the server to provide additional state
changing behavior as logging, accounting, pre- fetching, etc. However, these actual effects and state
changes, must not be intended by the operation so that it can be held accountable.

Method implementations must fulfill the following basic properties according to RFC 7231:

Method Safe Idempotent Cacheable

GET 0 Yes 0 Yes 0 Yes

HEAD 0 Yes 0 Yes 0 Yes

POST 0No 0 No, but SHOULD consider to 0 May, but only if specific POST

design POST and PATCH idempotent endpoint is safe. Hint: not
supported by most caches.

PUT 0No 0 Yes 0No
PATCH 0No 0 No, but SHOULD consider to 0 No
design POST and PATCH idempotent
DELETE 0 No 0 Yes 0 No
OPTIONS 0 Yes 0 Yes 0 No
TRACE 0 Yes 0 Yes 0 No

Note: MUST document cachable GET, HEAD, and POST endpoints.

5.1.3. SHOULD consider to design POST and PATCH idempotent

In many cases it is helpful or even necessary to design POST and PATCH idempotent for clients to
expose conflicts and prevent resource duplicate (a.k.a. zombie resources) or lost updates, e.g. if
same resources may be created or changed in parallel or multiple times. To design an idempotent
API endpoint owners should consider to apply one of the following three patterns.

110

A resource specific conditional key provided via If-Match header in the request. The key is in
general a meta information of the resource, e.g. a hash or version number, often stored with it. It
allows to detect concurrent creations and updates to ensure idempotent behavior (see MAY
consider to support ETag together with If-Match/If-None-Match header).

A resource specific secondary key provided as resource property in the request body. The
secondary key is stored permanently in the resource. It allows to ensure idempotent behavior by
looking up the unique secondary key in case of multiple independent resource creations from
different clients (see SHOULD use secondary key for idempotent POST design).

A client specific idempotency key provided via Idempotency-Key header in the request. The key
is not part of the resource but stored temporarily pointing to the original response to ensure
idempotent behavior when retrying a request (see MAY consider to support Idempotency-Key

https://tools.ietf.org/html/rfc7231#section-4.2.3
https://tools.ietf.org/html/rfc7231
#get
#head
#post
#post
#put
#patch
#delete
#options
#trace
#post
#patch
#230

header).

Note: While conditional key and secondary key are focused on handling concurrent requests, the
idempotency key is focused on providing the exact same responses, which is even a stronger
requirement than the idempotency defined above. It can be combined with the two other patterns.

To decide, which pattern is suitable for your use case, please consult the following table showing
the major properties of each pattern:

Conditional Key Secondary Key Idempotency

Key
Applicable with PATCH POST POST/PATCH
HTTP Standard 0 Yes 0 No 0 No
Prevents duplicate (zombie) resources 0 Yes 0 Yes 0 No
Prevents concurrent lost updates 0 Yes 0No 0No
Supports safe retries 0 Yes 0 Yes 0 Yes
Supports exact same response 0No 0No U Yes
Can be inspected (by intermediaries) 0 Yes 0 No 0 Yes
Usable without previous GET 0No 0 Yes 0 Yes

Note: The patterns applicable to PATCH can be applied in the same way to PUT and DELETE providing
the same properties.

If you mainly aim to support safe retries, we suggest to apply conditional key and secondary key
pattern before the Idempotency Key pattern.

5.1.4. SHOULD use secondary key for idempotent POST design

The most important pattern to design POST idempotent for creation is to introduce a resource
specific secondary key provided in the request body, to eliminate the problem of duplicate (a.k.a
zombie) resources.

The secondary key is stored permanently in the resource as alternate key or combined key (if
consisting of multiple properties) guarded by a uniqueness constraint enforced server-side, that is
visible when reading the resource. The best and often naturally existing candidate is a unique
foreign key, that points to another resource having one-on-one relationship with the newly created
resource, e.g. a parent process identifier.

A good example here for a secondary key is the shopping cart ID in an order resource.

Note: When using the secondary key pattern without Idempotency-Key all subsequent retries should
fail with status code 409 (conflict). We suggest to avoid 200 here unless you make sure, that the
delivered resource is the original one implementing a well defined behavior. Using 204 without
content would be a similar well defined option.

111

#patch
#post
#post
#patch
#get
#patch
#put
#delete
#post
#230
#status-code-409
#status-code-200
#status-code-204

5.1.5. MUST define collection format of header and query parameters

Header and query parameters allow to provide a collection of values, either by providing a comma-
separated list of values or by repeating the parameter multiple times with different values as
follows:

Parameter Comma-separated Values Multiple Parameters Standard
Type
Header Header: valuel,value? Header: valuel, Header: value2 RFC 7230

Section 3.2.2
Query ?param=valuel,value? 7param=valuel¶m=value? RFEC 6570
Section 3.2.8

As Open API does not support both schemas at once, an API specification must explicitly define the
collection format to guide consumers as follows:

Parameter Comma-separated Values Multiple Parameters

Type

Header style: simple, explode: false not allowed (see RFC 7230 Section 3.2.2)
Query style: form, explode: false style: form, explode: true

When choosing the collection format, take into account the tool support, the escaping of special
characters and the maximal URL length.

5.1.6. SHOULD design simple query languages using query parameters

We prefer the use of query parameters to describe resource-specific query languages for the
majority of APIs because it’s native to HTTP, easy to extend and has excellent implementation
support in HTTP clients and web frameworks.

Query parameters should have the following aspects specified:

* Reference to corresponding property, if any

» Value range, e.g. inclusive vs. exclusive

* Comparison semantics (equals, less than, greater than, etc)

* Implications when combined with other queries, e.g. and vs. or
How query parameters are named and used is up to individual API designers. The following
examples should serve as ideas:

» name=Pon, to query for elements based on property equality

* age=>5, to query for elements based on logical properties

o Assuming that elements don’t actually have an age but rather a birthday
* max_length=5, based on upper and lower bounds (min and max)

* shorter_than=5, using terminology specific e.g. to length

112

https://tools.ietf.org/html/rfc7230#section-3.2.2
https://tools.ietf.org/html/rfc7230#section-3.2.2
https://tools.ietf.org/html/rfc6570#section-3.2.8
https://tools.ietf.org/html/rfc6570#section-3.2.8
https://tools.ietf.org/html/rfc7230#section-3.2.2

e created_before=2019-07-17 or not_modified_since=2019-07-17
- Using terminology specific e.g. to time: before, after, since and until

We don’t advocate for or against certain names because in the end APIs should be free to choose
the terminology that fits their domain the best.

5.1.7. SHOULD design complex query languages using JSON

Minimalistic query languages based on query parameters are suitable for simple use cases with a
small set of available filters that are combined in one way and one way only (e.g. and semantics).
Simple query languages are generally preferred over complex ones.

Some APIs will have a need for sophisticated and more complex query languages. Dominant
examples are APIs around search (incl. faceting) and product catalogs.

Aspects that set those APIs apart from the rest include but are not limited to:

* Unusual high number of available filters
* Dynamic filters, due to a dynamic and extensible resource model
» Free choice of operators, e.g. and, or and not
APIs that qualify for a specific, complex query language are encouraged to use nested JSON data
structures and define them using Open API directly. The provides the following benefits:
* Data structures are easy to use for clients
> No special library support necessary
> No need for string concatenation or manual escaping
 Data structures are easy to use for servers
> No special tokenizers needed
o Semantics are attached to data structures rather than text tokens

¢ Consistent with other HTTP methods

API is defined in Open API completely
- No external documents or grammars needed

o Existing means are familiar to everyone

JSON-specific rules and most certainly needs to make use of the GET-with-body pattern.

5.1.7.1. Example

The following JSON document should serve as an idea how a structured query might look like.
{
“and": {

"name": {
"match": "Alice"

113

}I

"age": {
"or": {
"range": {
">": 25,
"<="1: 50
iy
"=": 65
}
}

Feel free to also get some inspiration from:
* Elastic Search: Query DSL
* GraphQL: Queries
5.1.8. MUST document implicit filtering

Sometimes certain collection resources or queries will not list all the possible elements they have,
but only those for which the current client is authorized to access.

Implicit filtering could be done on:

* the collection of resources being return on a parent GET request

* the fields returned for the resource’s detail
In such cases, the implicit filtering must be in the API specification (in its description).
Consider caching considerations when implicitly filtering.
Example:

If an employee of the company Foo accesses one of our business-to-business service and performs a
GET /business-partners, it must, for legal reasons, not display any other business partner that is not
owned or contractually managed by her/his company. It should never see that we are doing
business also with company Bar.

Response as seen from a consumer working at F0O:

{
"items": [
{ "name": "Foo Performance" },
{ "name": "Foo Sport" },
{ "name": "Foo Signature" }
]
}

114

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://graphql.org/learn/queries/
#get
#get

Response as seen from a consumer working at BAR:

{
"items": [
{ "name": "Bar Classics" },
{ "name": "Bar pour Elle" }
]
+

The API Specification should then specify something like this:

paths:
/business-partner:
get:
description: >-
Get the list of registered business partner.
Only the business partners to which you have access to are returned.

5.2. HTTP status codes and errors

5.2.1. MUST specify success and error responses

APIs should define the functional, business view and abstract from implementation aspects.
Success and error responses are a vital part to define how an API is used correctly.

Therefore, you must define all success and service specific error responses in your API
specification. Both are part of the interface definition and provide important information for
service clients to handle standard as well as exceptional situations.

Hint: In most cases it is not useful to document all technical errors, especially if they are not under
control of the service provider. Thus unless a response code conveys application-specific functional
semantics or is used in a none standard way that requires additional explanation, multiple error
response specifications can be combined using the following pattern (see also (RFP) MUST only use
durable and immutable remote references):

responses:
default:
description: error occurred - see status code and problem object for more
information.
content:
"application/problem+json":

schema:
$ref: '"https://opensource.zalando.com/problem/schema.yaml#/Problem’

API designers should also think about a troubleshooting board as part of the associated online API

115

documentation. It provides information and handling guidance on application-specific errors and is
referenced via links from the API specification. This can reduce service support tasks and
contribute to service client and provider performance.

5.2.2. MUST use standard HTTP status codes

You must only use standardized HTTP status codes consistently with their intended semantics. You
must not invent new HTTP status codes.

RFC standards define ~60 different HTTP status codes with specific semantics (mainly RFC7231 and
RFC 6585) — and there are upcoming new ones, e.g. draft legally-restricted-status. See overview on
all error codes on Wikipedia or via https://httpstatuses.com/) also inculding 'unofficial codes', e.g.
used by popular web servers like Nginx.

Below we list the most commonly used and best understood HTTP status codes, consistent with
their semantic in the RFCs. APIs should only use these to prevent misconceptions that arise from
less commonly used HTTP status codes.

Important: As long as your HTTP status code usage is well covered by the semantic defined here,
you should not describe it to avoid an overload with common sense information and the risk of
inconsistent definitions. Only if the HTTP status code is not in the list below or its usage requires
additional information aside the well defined semantic, the API specification must provide a clear
description of the HTTP status code in the response.

5.2.2.1. Success codes

Code Meaning Methods
200 OK - this is the standard success response <all>
201 Created - Returned on successful entity creation. You are free to POST, PUT

return either an empty response or the created resource in
conjunction with the Location header. (More details found in the
Common headers.) Always set the Location header.

202 Accepted - The request was successful and will be processed POST, PUT, PATCH,
asynchronously. DELETE

204 No content - There is no response body. PUT, PATCH, DELETE

207 Multi-Status - The response body contains multiple status POST

informations for different parts of a batch/bulk request (see MUST
use code 207 for batch or bulk requests).

5.2.2.2. Redirection codes

Code Meaning Methods

301 Moved Permanently - This and all future requests should be directed <all>
to the given URL

303 See Other - The response to the request can be found under another POST, PUT, PATCH,
URI using a GET method. DELETE

116

https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/draft-tbray-http-legally-restricted-status-05
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://httpstatuses.com/
#status-code-200
#status-code-201
#post
#put
#status-code-202
#post
#put
#patch
#delete
#status-code-204
#put
#patch
#delete
#status-code-207
#post
#status-code-301
#status-code-303
#get
#post
#put
#patch
#delete

Code
304

Meaning Methods

Not Modified - indicates that a conditional GET or HEAD request GET, HEAD
would have resulted in 200 response if it were not for the fact that

the condition evaluated to false, i.e. resource has not been modified

since the date or version passed via request headers If-Modified-

Since or If-None-Match.

5.2.2.3. Client side error codes

Code
400

401

403
404
405
406

408

409

410

412

415

423
428

429

Meaning Methods

Bad request - generic / unknown error. Should also be delivered in ~ <all>
case of input payload fails business logic validation.

Unauthorized - the users must log in (this often means <all>
"Unauthenticated").

Forbidden - the user is not authorized to use this resource. <all>
Not found - the resource is not found. <all>
Method Not Allowed - the method is not supported, see OPTIONS. <all>

Not Acceptable - resource can only generate content not acceptable ~ <all>
according to the Accept headers sent in the request.

Request timeout - the server times out waiting for the resource. <all>

Conflict - request cannot be completed due to conflict, e.g. when two POST, PUT, PATCH,
clients try to create the same resource or if there are concurrent, DELETE
conflicting updates.

Gone - resource does not exist any longer, e.g. when accessing a <all>
resource that has intentionally been deleted.

Precondition Failed - returned for conditional requests, e.g. If-Match PUT, PATCH, DELETE
if the condition failed. Used for optimistic locking.

Unsupported Media Type - e.g. clients sends request body without POST, PUT, PATCH,

content type. DELETE
Locked - Pessimistic locking, e.g. processing states. PUT, PATCH, DELETE
Precondition Required - server requires the request to be <all>

conditional, e.g. to make sure that the "lost update problem" is
avoided (see MAY consider to support Prefer header to handle
processing preferences).

Too many requests - the client does not consider rate limiting and <all>
sent too many requests (see MUST use code 429 with headers for
rate limits).

5.2.2.4. Server side error codes:

117

#status-code-304
#get
#head
#status-code-400
#status-code-401
#status-code-403
#status-code-404
#status-code-405
#options
#status-code-406
#status-code-408
#status-code-409
#post
#put
#patch
#delete
#status-code-410
#status-code-412
https://tools.ietf.org/html/rfc7232#section-3.1
#put
#patch
#delete
#status-code-415
#post
#put
#patch
#delete
#status-code-423
#put
#patch
#delete
#status-code-428
#status-code-429

Code Meaning Methods

500 Internal Server Error - a generic error indication for an unexpected <all>
server execution problem (here, client retry may be sensible)

501 Not Implemented - server cannot fulfill the request (usually implies <all>
future availability, e.g. new feature).

503 Service Unavailable - service is (temporarily) not available (e.g. ifa <all>
required component or downstream service is not
available) — client retry may be sensible. If possible, the service
should indicate how long the client should wait by setting the Retry-
After header.

5.2.3. MUST use most specific HTTP status codes

You must use the most specific HTTP status code when returning information about your request
processing status or error situations.

5.2.4. MUST use code 207 for batch or bulk requests

Some APIs are required to provide either batch or bulk requests using POST for performance
reasons, i.e. for communication and processing efficiency. In this case services may be in need to
signal multiple response codes for each part of an batch or bulk request. As HTTP does not provide
proper guidance for handling batch/bulk requests and responses, we herewith define the following
approach:

* A batch or bulk request always responds with HTTP status code 207 unless a non-item-specific
failure occurs.

* A batch or bulk request may return 4xx/5xx status codes, if the failure is non-item-specific and
cannot be restricted to individual items of the batch or bulk request, e.g. in case of overload
situations or general service failures.

* A batch or bulk response with status code 207 always returns as payload a multi-status
response containing item specific status and/or monitoring information for each part of the
batch or bulk request.

Note: These rules apply even in the case that processing of all individual parts fail or each part is
executed asynchronously!

The rules are intended to allow clients to act on batch and bulk responses in a consistent way by
inspecting the individual results. We explicitly reject the option to apply 200 for a completely
successful batch as proposed in Nakadi’s POST /event-types/{name}/events as short cut without
inspecting the result, as we want to avoid risks and expect clients to handle partial batch failures

anyway.

The bulk or batch response may look as follows:

BatchOrBulkResponse:
description: batch response object.

118

#status-code-500
#status-code-501
#status-code-503
https://tools.ietf.org/html/rfc7231#section-7.1.3
https://tools.ietf.org/html/rfc7231#section-7.1.3
#post
#status-code-207
#client-side-error-codes
#server-side-error-codes
#status-code-207
#status-code-200
https://nakadi.io/manual.html#/event-types/name/events_post

type: object

properties:
items:
type: array
items:
type: object
properties:
id:

description: Identifier of batch or bulk request item.
type: string
status:
description: >
Response status value. A number or extensible enum describing
the execution status of the batch or bulk request items.
type: string
x-extensible-enum: [...]
description:
description: >
Human readable status description and containing additional
context information about failures etc.
type: string
required: [id, status]

Note: while a batch defines a collection of requests triggering independent processes, a bulk defines
a collection of independent resources created or updated together in one request. With respect to
response processing this distinction normally does not matter.

5.2.5. MUST use code 429 with headers for rate limits

APIs that wish to manage the request rate of clients must use the 429 (Too Many Requests) response
code, if the client exceeded the request rate (see RFC 6585). Such responses must also contain
header information providing further details to the client. There are two approaches a service can
take for header information:

* Return a Retry-After header indicating how long the client ought to wait before making a
follow-up request. The Retry-After header can contain a HTTP date value to retry after or the
number of seconds to delay. Either is acceptable but APIs should prefer to use a delay in
seconds.

* Return a trio of X-RateLimit headers. These headers (described below) allow a server to express
a service level in the form of a number of allowing requests within a given window of time and
when the window is reset.

The X-RatelLimit headers are:

* X-RateLimit-Limit: The maximum number of requests that the client is allowed to make in this
window.

» X-RateLimit-Remaining: The number of requests allowed in the current window.

e X-RatelLimit-Reset: The relative time in seconds when the rate limit window will be reset.

119

#status-code-429
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc7231#section-7.1.3

Beware that this is different to Github and Twitter’s usage of a header with the same name
which is using UTC epoch seconds instead.

The reason to allow both approaches is that APIs can have different needs. Retry-After is often
sufficient for general load handling and request throttling scenarios and notably, does not strictly
require the concept of a calling entity such as a tenant or named account. In turn this allows
resource owners to minimise the amount of state they have to carry with respect to client requests.
The 'X-RateLimit' headers are suitable for scenarios where clients are associated with pre-existing
account or tenancy structures. 'X-RateLimit' headers are generally returned on every request and
not just on a 429, which implies the service implementing the API is carrying sufficient state to
track the number of requests made within a given window for each named entity.

5.2.6. MUST use problem JSON

RFC 7807 defines a Problem JSON object and the media type application/problem+json. Operations
should return it (together with a suitable status code) when any problem occurred during
processing and you can give more details than the status code itself can supply, whether it be
caused by the client or the server (i.e. both for 4xx or 5xx error codes).

The Open API schema definition of the Problem JSON object can be found on github. You can
reference it by using:

responses:
503:
description: Service Unavailable
content:
"application/problem+json":
schema:

$ref: "https://opensource.zalando.com/problem/schema.yaml#/Problem’

You may define custom problem types as extensions of the Problem JSON object if your API needs to
return specific, additional and detailed error information.

Problem type identifiers in our APIs are not meant to be resolved. The RFC encourages that custom
problem types are URI references that point to human-readable documentation, but we
deliberately decided against that. URLs tend to be fragile and not very stable over a longer period.
Hosting documentation often requires to bind to a specific tool or have DNS records that contain
volatile organization structures, e.g. team names. Another reason is that all the important parts of
an API must be documented using OpenAPI anyway.

In order to stay compatible the proposed pattern for custom problem types is to use relative URI
references:

» /problems/out-of-stock
» /problems/insufficient-funds

* /problems/user-deactivated

Examples of problem types that do not satisfy our criteria:

120

https://tools.ietf.org/html/rfc7807
#client-side-error-codes
#server-side-error-codes
https://zalando.github.io/problem/schema.yaml
https://tools.ietf.org/html/rfc3986#section-4.1
https://tools.ietf.org/html/rfc3986#section-4.1

* https://docs.team.company.org/out-of-stock

* https://en.wikipedia.org/wiki/Stockout

* http://www.businessdictionary.com/definition/stockout.html
Hint for backward compatibility: A previous version of this guideline (before the publication of RFC
7807 and the registration of the media type) told to return custom variant of the media type
application/x.problem+json. Servers for APIs defined before this change should pay attention to the

Accept header sent by the client and set the Content-Type header of the problem response
correspondingly. Clients of such APIs should accept both media types.

5.2.7. MUST not expose stack traces

Stack traces contain implementation details that are not part of an API, and on which clients should
never rely. Moreover, stack traces can leak sensitive information that partners and third parties are
not allowed to receive and may disclose insights about vulnerabilities to attackers.

6. Data formats

6.1. Data formats

6.1.1. MUST use JSON to encode structured data

Use JSON-encoded body payload for transferring structured data. The JSON payload must follow
RFC 7159 using a JSON object as top-level data structure (if possible) to allow for future extension.
This also applies to collection resources, where one naturally would assume an array. See also
(RFP) MUST always return JSON objects as top-level data structures if JSON is being used.

Additionally, the JSON payload must comply to RFC 7493), particularly

* Section 2.1 on encoding of characters, and

» Section 2.3 on object constraints.
As a consequence, a JSON payload must

* use UTF-8 encoding
* consist of valid Unicode strings, i.e. must not contain non-characters or surrogates, and

* contain only unique member names (no duplicate names).

6.1.2. MAY use non JSON media types for binary data or alternative content
representations

Other media types may be used in following cases:

» Transferring binary data or data whose structure is not relevant. This is the case if payload
structure is not interpreted and consumed by clients as is. Example of such use case is
downloading images in formats JPG, PNG, GIF.

121

https://docs.team.company.org/out-of-stock
https://en.wikipedia.org/wiki/Stockout
http://www.businessdictionary.com/definition/stockout.html
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7493
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.3
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.1
https://tools.ietf.org/html/rfc7493#section-2.3

* In addition to JSON version alternative data representations (e.g. in formats PDF, DOC, XML)
may be made available through content negotiation.

6.1.2.1. SHOULD encode embedded binary data in base64url

Exposing binary data using an alternative media type is generally preferred. See the rule above.

If an alternative content representation is not desired then binary data should be embedded into
the JSON document as a base64url-encoded string property following RFC 7493 Section 4.4.

6.1.3. SHOULD prefer standard media type name application/json

Previously, this guideline allowed the wuse of custom media types like
application/x.pon.article+json. This usage is not recommended anymore and should be avoided,
except where it is necessary for cases of media type versioning. Instead, just use the standard
media type name application/json (or application/problem+json for MUST use problem JSON).

Custom media types beginning with x bring no advantage compared to the standard media type for
JSON, and make automated processing more difficult. They are also discouraged by RFC 6838.

6.1.4. SHOULD use standardized property formats

JSON Schema and Open API define several universally useful property formats. The following table
contains some additional formats that are particularly useful in an e-commerce environment.

Please notice that the list is not exhaustive and everyone is encouraged to propose additions.

type format Specification Example

integer int32 7721071004

integer int64 772107100456824

integer bigint 77210710045682438959
number float IEEE 754-2008 3.1415927

number double IEEE 754-2008 3.141592653589793

number decimal 3.141592653589793238462643383279
string bcp4d7 BCP 47 "en-DE"

string byte RFC 7493 "dGVzdA=="

string date REC 3339 "2019-07-30"

string date-time REC 3339 "2019-07-30T06:43:40.2527"
string email REC 5322 "example@pon.com"

string gtin-13 GTIN "5710798389878"

string hostname REC 1034 "www.pon.com"

string ipv4 REC 2673 "104.75.173.179"

string ipvb REC 2673 "2600:1401:2::8a"

122

https://tools.ietf.org/html/rfc7493#section-4.4
https://tools.ietf.org/html/rfc6838#section-3.4
https://json-schema.org/understanding-json-schema/reference/string.html#format
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#data-types
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/rfc7493
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc5322
mailto:example@pon.com
https://en.wikipedia.org/wiki/Global_Trade_Item_Number
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc2673
https://tools.ietf.org/html/rfc2673

type format Specification Example

string is0-3166 ISO 3166-1 alpha-2 "DE"

string is0-4217 ISO 4217 "EUR"

string is0-639 ISO 639-1 "de"

string json-pointer RFC 6901 "/items/0/id"

string password "secret”

string regex ECMA 262 "N[a-z0-9]+8"

string time REC 3339 "06:43:40.2527"

string uri RFEC 3986 "https://www.pon.com/"
string uri-template RFC 6570 "/users/{id}"

string uuid REC 4122 "e2ab873e-b295-11€9-9c02---"

6.1.5. MUST use standard date and time formats

6.1.5.1. JSON payload

Read more about date and time format in SHOULD define dates properties compliant with RFC
3339.

6.1.5.2. HTTP headers

Http headers including the proprietary headers use the HTTP date format defined in RFC 7231.

6.1.6. SHOULD use standards for country, language and currency codes
Use the following standard formats for country, language and currency codes:

» ISO 3166-1-alpha2 country codes

o (Itis "GB", not "UK", even though "UK" has seen some use at Pon)
* ISO 639-1 language code

o BCP 47 (based on ISO 639-1) for language variants

» ISO 4217 currency codes

6.1.7. MUST define format for number and integer types

Whenever an API defines a property of type number or integer, the precision must be defined by the
format as follows to prevent clients from guessing the precision incorrectly, and thereby changing
the value unintentionally:

type format specified value range
integer int32 integer between -2*' and 2*'-1
integer int64 integer between -2* and 2%-1

123

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/rfc6901
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc7231#section-7.1.1.1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/bcp47
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_4217

type
integer
number
number

number

format specified value range

bigint arbitrarily large signed integer number

float IEEE 754-2008/ISO 60559:2011 binary32 decimal number
double IEEE 754-2008/ISO 60559:2011 binary64 decimal number
decimal arbitrarily precise signed decimal number

The precision must be translated by clients and servers into the most specific language types. E.g.
for the following definitions the most specific language types in Java will translate to BigDecimal for
Money.amount and int or Integer for the OrderList.page_size:

components:
schemas:
Money:
type: object
properties:
amount:

type: number

description: Amount expressed as a decimal number of major currency units
format: decimal

example: 99.95

OrderList:

type: object
properties:
page_size:

type: integer

description: Number of orders in list
format: int32

example: 42

6.2. JSON guidelines

These guidelines provides recommendations for defining JSON data at Pon. JSON here refers to RFC
7159 (which updates RFC 4627), the "application/json" media type and custom JSON media types
defined for APIs. The guidelines clarifies some specific cases to allow Pon JSON data to have an
idiomatic form across teams and services.

The first some of the following guidelines are about property names, the later ones about values.

6.2.1. MUST property names must be ASCII snake_case (and never
camelCase): "a-z_][a-z_0-9]*$

Property names are restricted to ASCII strings. The first character must be a letter, or an
underscore, and subsequent characters can be a letter, an underscore, or a number.

124

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc4627

(It is recommended to use _ at the start of property names only for keywords like _1links.)

Rationale: No established industry standard exists, but many popular Internet companies prefer
snake_case: e.g. GitHub, Stack Exchange, Twitter. Others, like Google and Amazon, use both - but
not only camelCase. It’s essential to establish a consistent look and feel such that JSON looks as if it
came from the same hand.

6.2.2. MUST declare enum values using UPPER_SNAKE_CASE format

Enum values (using enum or x-extensible-enum) need to consistently use the upper-snake case
format, e.g. VALUE or YET_ANOTHER_VALUE. This approach allows to clearly distinguish values from
properties or other elements.

6.2.3. SHOULD define maps using additionalProperties

A "map" here is a mapping from string keys to some other type. In JSON this is represented as an
object, the key-value pairs being represented by property names and property values. In Open API
schema (as well as in JSON schema) they should be represented using additionalProperties with a
schema defining the value type. Such an object should normally have no other defined properties.

The map keys don’t count as property names in the sense of rule 118, and can follow whatever
format is natural for their domain. Please document this in the description of the map object’s
schema.

Here is an example for such a map definition (the translations property):

components:
schemas:
Message:
description:
A message together with translations in several languages.
type: object
properties:
message_key:
type: string
description: The message key.
translations:
description:
The translations of this message into several languages.
The keys are [IETF BCP-47 language
tags](https://tools.ietf.org/html/bcp47).
type: object
additionalProperties:
type: string
description:
the translation of this message into the language identified by the key.

An actual JSON object described by this might then look like this:

125

#112

{ "message_key": "color",
"translations": {
"de": "Farbe",
"en-US": "color",
"en-GB": "colour",

eo": "koloro",
"nl": "kleur"

6.2.4. SHOULD pluralize array names

To indicate they contain multiple values prefer to pluralize array names. This implies that object
names should in turn be singular.

6.2.5. MUST not use null for boolean properties

Schema based JSON properties that are by design booleans must not be presented as nulls. A
boolean is essentially a closed enumeration of two values, true and false. If the content has a
meaningful null value, strongly prefer to replace the boolean with enumeration of named values or
statuses - for example accepted_terms_and_conditions with true or false can be replaced with
terms_and_conditions with values yes, no and unknown.

6.2.6. MUST use same semantics for null and absent properties

Open API 3.x allows to mark properties as required and as nullable to specify whether properties
may be absent ({}) or null ({"example":null}). If a property is defined to be not required and
nullable (see 2nd row in Table below), this rule demands that both cases must be handled in the
exact same manner by specification.

The following table shows all combinations and whether the examples are valid:

required nullable { {"example":null}
true true 0No 0 Yes
false true 0 Yes 0 Yes
true false 0 No 0No
false false 0 Yes 0No

While API designers and implementers may be tempted to assign different semantics to both cases,
we explicitly decide against that option, because we think that any gain in expressiveness is far
outweighed by the risk of clients not understanding and implementing the subtle differences
incorrectly.

As an example, an API that provides the ability for different users to coordinate on a time schedule,
e.g. a meeting, may have a resource for options in which every user has to make a choice. The
difference between undecided and decided against any of the options could be modeled as absent

126

and null respectively. It would be safer to express the null case with a dedicated Null object, e.g. {}
compared to {"id":"42"}.

Moreover, many major libraries have somewhere between little to no support for a null/absent
pattern (see Gson, Moshi, Jackson, JSON-B). Especially strongly-typed languages suffer from this
since a new composite type is required to express the third state. Nullable Option/Optional/Maybe
types could be used but having nullable references of these types completely contradicts their
purpose.

The only exception to this rule is JSON Merge Patch RFC 7396) which uses null to explicitly indicate
property deletion while absent properties are ignored, i.e. not modified.

6.2.7. SHOULD not use null for empty arrays

Empty array values can unambiguously be represented as the empty list, [].

6.2.8. SHOULD represent enumerations as strings

Strings are a reasonable target for values that are by design enumerations.

6.2.9. SHOULD name date/time properties with _at suffix

Dates and date-time properties should end with _at to distinguish them from boolean properties
which otherwise would have very similar or even identical names:

created_at rather than created,

* modified_at rather than modified,

e occurred_at rather than occurred, and
e returned_at rather than returned.

Note: created and modified were mentioned in an earlier version of the guideline and are therefore
still accepted for APIs that predate this rule.

6.2.10. SHOULD define dates properties compliant with RFC 3339

Use the date and time formats defined by RFC 3339:

« for "date" use strings matching date-fullyear "-" date-month "-" date-mday, for example: 2015-
05-28

+ for "date-time" use strings matching full-date "T" full-time, for example 2015-05-28714:07:17Z
Note that the Open API format "date-time" corresponds to "date-time" in the RFC) and 2015-05-28 for

a date (note that the Open API format "date" corresponds to "full-date" in the RFC). Both are specific
profiles, a subset of the international standard ISO 8601.

A zone offset may be used (both, in request and responses)—this is simply defined by the
standards. However, we encourage restricting dates to UTC and without offsets. For example 2015-
05-28T14:07:177 rather than 2015-05-28T14:07:17+00:00. From experience we have learned that zone

127

https://en.wikipedia.org/wiki/Null_object_pattern
https://stackoverflow.com/questions/48465005/gson-distinguish-null-value-field-and-missing-field
https://github.com/square/moshi#borrows-from-gson
https://github.com/FasterXML/jackson-databind/issues/578
https://developer.ibm.com/articles/j-javaee8-json-binding-3/
https://tools.ietf.org/html/rfc7396
#created_at
#created
#modified_at
#modified
#created
#modified
https://tools.ietf.org/html/rfc3339#section-5.6
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types
https://en.wikipedia.org/wiki/ISO_8601

offsets are not easy to understand and often not correctly handled. Note also that zone offsets are
different from local times that might be including daylight saving time. Localization of dates should
be done by the services that provide user interfaces, if required.

When it comes to storage, all dates should be consistently stored in UTC without a zone offset.
Localization should be done locally by the services that provide user interfaces, if required.

Sometimes it can seem data is naturally represented using numerical timestamps, but this can
introduce interpretation issues with precision, e.g. whether to represent a timestamp as
1460062925, 1460062925000 or 1460062925.000. Date strings, though more verbose and requiring
more effort to parse, avoid this ambiguity.

7. Appendices

Appendix G: Changelog
This change log only contains major changes made after XXXX 2020.

Non-major changes are editorial-only changes or minor changes of existing guidelines, e.g. adding
new error code. Major changes are changes that come with additional obligations, or even change
an existing guideline obligation. The latter changes are additionally labeled with "Rule Change"
here.

To see a list of all changes, please have a look at the commit list in Github.

7.G.1. Rule Changes

* 2020-XX-XX:
7.1. Bibliography

Generic

= Lessons-learned blog: Thoughts on RESTful API Design
= [praeng] Pragmatic engineer blog: Readable Code

= [accidental-doppelganger] https://www.informit.com/articles/article.aspx?p=1313447

Coding standards

= [nasa-safety-code] The Power of Ten — Rules for Developing Safety Critical Code

= [gnu-coding-standards] GNU Coding Standards

[PonStandard] PonStandard

= [standard]s] standard]S

[googleStyleguide]s] Google Javascript styleguide

[googleStyleguideCpp] Google CPP styleguide

128

https://github.com/PonDigitalSolutions/restful-api-guidelines/commits/master
http://restful-api-design.readthedocs.org/en/latest/
https://blog.pragmaticengineer.com/readable-code/
https://www.informit.com/articles/article.aspx?p=1313447
http://pixelscommander.com/wp-content/uploads/2014/12/P10.pdf
http://www.gnu.org/prep/standards/standards.html
https://github.com/pondevelopment/ponstandard/packages/1290139
https://standardjs.com/index.html
https://google.github.io/styleguide/jsguide.html
https://google.github.io/styleguide/cppguide.html

= [phpStandards] PHP Standards Recommendations

Open API specification

= Open API specification

= Open API specification mind map

Publications, specifications and standards

RFC 3339:
REC 4122:
RFC 4627
RFC 8288:
RFC 6585:
RFEC 6902:
RFC 7159
RFC 7230:
RFC 7231:
REC 7232:
RFC 7233:
RFC 7234:
REC 7240:
REC 7396:
RFC 7807:
RFC 4648:

Date and Time on the Internet: Timestamps

A Universally Unique IDentifier (UUID) URN Namespace

: The application/json Media Type for JavaScript Object Notation (JSON)

Web Linking
Additional HTTP Status Codes
JavaScript Object Notation (JSON) Patch

: The JavaScript Object Notation (JSON) Data Interchange Format

Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests
Hypertext Transfer Protocol (HTTP/1.1): Range Requests

Hypertext Transfer Protocol (HTTP/1.1): Caching

Prefer Header for HTTP

JSON Merge Patch

Problem Details for HTTP APIs

The Base16, Base32, and Base64 Data Encodings

ISO 8601: Date and time format

ISO 3166-1 alpha-2: Two letter country codes

ISO 639-1:

Two letter language codes

ISO 4217: Currency codes

BCP 47: Tags for Identifying Languages

Dissertations

= Roy Thomas Fielding - Architectural Styles and the Design of Network-Based Software

Architectures: This is the text which defines what REST is.

Books

= REST in Practice: Hypermedia and Systems Architecture

» Build APIs You Won’t Hate

129

https://www.php-fig.org/psr/
https://github.com/OAI/OpenAPI-Specification/
https://openapi-map.apihandyman.io/
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc8288
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc4648
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_4217
https://tools.ietf.org/html/bcp47
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate

= InfoQ eBook - Web APIs: From Start to Finish
= [fowler-refactoring] Refactoring, Improving the Design of Existing Code, 2nd edition
= [pragmatic-programmer] The pragmatic programmer, 20th anniversary edition

= [building-secure-and-reliable-systems]
*https://sre.google/static/pdf/building_secure_and_reliable_systems.pdf[Building secure &
reliable systems]

<script sre="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

<!-- Adds rule id as a postfix to all rule titles -->
<script>
var rulelIdRegEx = /(\d){3}/;

// Rules are either in h4 or in h5
['h4","h5"].forEach(tag => {
var ruleheaders = document.getElementsByTagName(tag)
for (var i = @; i < ruleheaders.length; i++) {
var header = ruleheaders[i];
if (header.id && header.id.match(ruleIdRegEx)) {
var a = header.getElementsByTagName("a")[0]
a.innerHTML += " [" + header.id + "]";

/**

* If a rule is a standard it is appended with an "S"
*/
if (header.id.includes('S")) {
$(a).parent().parent().addClass('rule-standard");
}
}
}
I9H

</script>

<!-- Add last modified to header -->

<script>

$(function() {

$("#tfooter-text")

.clone()
.attr('id', 'last-modified')
.attr('class', 'last-modified')
.insertAfter('#_pon_integration_and_development_guidelines');

)

</script>

<!l-- Add table of contents anchor and remove document title -->
<script>

var toc = document.getElementById('toc');

var div = document.createElement('div');

div.id = 'table-of-contents';

toc.parentNode.replaceChild(div, toc);

130

http://www.infoq.com/minibooks/emag-web-api
https://martinfowler.com/books/refactoring.html
https://pragprog.com/book/tpp20/the-pragmatic-programmer-20th-anniversary-edition

div.appendChild(toc);

var ul = toc.childNodes[3];
ul.removeChild(ul.childNodes[1]);
</script>

<!-- Adds sidebar navigation -->

<script>

var header = document.getElementById('header');
var nav = document.createElement('div');

nav.id = "toc';

nav.classlList.add('toc2");

var title = document.createElement('div');
title.id = 'toctitle';

var link = document.createElement('a');
link.innerText = 'Integration / Development Guidelines';
link.href = '#';

title.append(link);
nav.append(title);

var ul = document.createElement('ul');
ul.classlist.add('sectlevell');

var link = document.createElement('a");
link.innerHTML = 'Table of Contents';
link.href = '#table-of-contents’;

11 = document.createElement('1i");
li.append(link);

ul.append(1i);

var link, 1i;
var headers = document.getElementsByTagName('h2");
for (var i = @; 1 < headers.length; i++) {
var a = headers[i].getElementsByTagName("a")[@];
if (a !== undefined) {
link = document.createElement('a');
link.innerHTML = a.innerHTML;
link.href = a.hash;
1i = document.createElement('1li");
1i.append(link);
ul.append(1i);

var subUl = document.createElement('ul');
var subHeaders = headers[i].nextElementSibling.getElementsByTagName("h3");
for (var subI = @; subI < subHeaders.length; subI++) {

var a = subHeaders[subI].getElementsByTagName("a")[0];

link = document.createElement('a');
link.innerHTML = a.innerHTML;

131

link.href = a.hash;
subLi = document.createElement('1li');
subLi.append(link);
subUl.append(subLi);

1i.append(subUl);
}

document.body.classlList.add("'toc2");
document.body.classList.add('toc-1left");
nav.append(ul);

//$('ul.sectlevell').clone().insertAfter($('#toctitle'));
//$('#toc ul.sectlevel3').hide();

// Add the left menu bar
header.prepend(nav);
</script>

<!-- Cookies Consent -->

<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/1libs/cookieconsent2/3.1.0/cookieconsent.min.css"
/>

<script
src="https://cdnjs.cloudflare.com/ajax/1libs/cookieconsent2/3.1.0/cookieconsent.min.js"></s
cript>

<script>
window.addEventListener("1load", function(){
window.cookieconsent.initialise({
"palette": {
"popup”: {
"background": "#eaf7f7",
"text": "#5c7291"

I
"button": {
"background": "#56cbdb",
"text": "H#ffffff"
}
H
"content": {
"message": "This web site uses cookies to analyze the general behavior of visitors."
}
Ny
</script>

[1] Per definition of R.Fielding REST APIs have to support HATEOAS (maturity level 3). Our guidelines do not strongly advocate for
full REST compliance, but limited hypermedia usage, e.g. for pagination (see Hypermedia). However, we still use the term "RESTful
APT", due to the absence of an alternative established term and to keep it like the very majority of web service industry that also
use the term for their REST approximations — in fact, in today’s industry full HATEOAS compliant APIs are a very rare exception.

[2] HTTP/1.1 standard (RFC 7230) defines two types of headers: end-to-end and hop-by-hop headers. End-to-end headers must be

132

https://tools.ietf.org/html/rfc7230#section-6.1

transmitted to the ultimate recipient of a request or response. Hop-by-hop headers, on the contrary, are meaningful for a single
connection only.

133

	Untitled
	Pon Integration and Development Guidelines
	Table of Contents
	1. Introduction
	1.1. Software engineering
	1.1.1. Software requirements
	1.1.2. Software architecture and design
	1.1.3. Software development
	1.1.4. Software testing
	1.1.5. Software maintenance and support

	1.2. Document management
	1.3. Attribution
	1.4. Conventions used in these guidelines
	1.5. Pon specific information
	1.5.1. Automated code style checking (linting)
	1.5.2. Guideline or standard
	1.5.3. MUST comply with standards and guidelines
	1.5.4. (RFP) MUST write all resources using U.S. English

	2. Generic
	2.1. Guilds
	2.1.1. Communication
	2.1.1.1. Ad-hoc
	2.1.1.2. New rules updates

	2.2. Monitoring
	2.2.1. (RFP) MUST have predefined monitoring based KPIs
	2.2.2. (RFP) MUST be able monitor operational state using automated tools
	2.2.3. (RFP) SHOULD be able to report detailed relevant operational states

	2.3. Quality
	2.3.1. (RFP) SHOULD have seperate environments for development, testing, acceptance and production
	2.3.1.1. Development
	2.3.1.2. Testing
	2.3.1.3. Acceptance
	2.3.1.4. Production

	2.3.2. Code Quality
	2.3.2.1. (RFP) MUST have code duplication checks
	2.3.2.2. (RFP) MUST have vulnerability checks

	2.3.3. GUI and websites quality
	2.3.3.1. (RFP) SHOULD have predefined tests

	2.3.4. API quality
	2.3.4.1. (RFP) MUST have predefined tests
	2.3.4.2. (RFP) MUST have a pre-defined code-coverage percentage

	2.4. Security
	2.4.1. (RFP) MUST be compliant with the Pon Security Policy and Principles
	2.4.2. (RFP) MUST be compliant with Binding Corporate Rules and local privacy legislation
	2.4.3. (RFP) MUST have performed a Security & Privacy intake
	2.4.4. (RFP) MUST have the agreed security and privacy measures approved

	2.5. Privacy
	2.6. Documentation
	2.6.1. MUST include documentation comment saying what the tool is for
	2.6.2. MUST include monitoring documentation
	2.6.2.1. References

	2.6.3. MUST document deployment procedures

	2.7. Onboarding
	2.7.1. (RFP) MUST include guidelines in onboarding procedure
	2.7.2. (RFP) SHOULD have pre-defined development environment(s)
	2.7.2.1. Patron(s) 🤍

	2.7.3. Solution architecture repository

	2.8. Intellectual property (IP)
	2.8.1. (RFP) MUST include project wide license file
	2.8.2. (RFP) MUST include copyright notice in each source file

	2.9. Checklist

	3. Integration guidelines
	3.1. Principles
	3.1.1. API design principles
	3.1.2. API as a product
	3.1.3. API first

	3.2. Solution design
	3.2.1. Microservices
	3.2.2. Connectivity
	3.2.2.1. (RFP) MUST have self-healing connectivity
	3.2.2.2. (RFP) SHOULD have increasing reconnection intervals

	3.2.3. Loosely coupled
	3.2.4. Security
	3.2.5. Monitoring
	3.2.5.1. (RFP) MUST setup monitoring and alerting connections

	3.2.6. Documentation
	3.2.7. Security

	3.3. Generic
	3.3.1. Pagination
	3.3.1.1. MUST support pagination
	3.3.1.2. SHOULD prefer cursor-based pagination, avoid offset-based pagination
	3.3.1.3. SHOULD use pagination links where applicable

	3.4. Types
	3.4.1. FTP
	3.4.1.1. Monitoring
	3.4.1.2. Documentation
	3.4.1.3. Security

	3.5. General guidelines
	3.5.1. (RFP) MUST follow API first principle
	3.5.2. (RFP) MUST provide API specification
	3.5.3. (RFP) MUST only use durable and immutable remote references
	3.5.4. (RFP) MAY provide API user manual

	3.6. Meta information
	3.6.1. (RFP) SHOULD contain API meta information
	3.6.2. (RFP) MAY use semantic versioning
	3.6.3. (RFP) MAY provide API identifiers
	3.6.4. (RFP) SHOULD provide API audience

	3.7. Security
	3.7.1. (RFP) MUST secure endpoints
	3.7.1.1. References

	3.7.2. (RFP) SHOULD define and assign permissions (scopes)
	3.7.3. (RFP) MAY follow naming convention for permissions (scopes)

	3.8. Compatibility
	3.8.1. (RFP) MUST not break backward compatibility
	3.8.2. (RFP) SHOULD prefer compatible extensions
	3.8.3. (RFP) MUST prepare clients accept compatible API extensions
	3.8.4. (RFP) SHOULD design APIs conservatively
	3.8.5. (RFP) MUST always return JSON objects as top-level data structures if JSON is being used
	3.8.6. (RFP) SHOULD refrain from using enumerations
	3.8.7. (RFP) SHOULD avoid versioning
	3.8.8. {STATUS-TODO} MUST API Versioning Has No “Right Way”
	3.8.9. (RFP) SHOULD use URI versioning

	3.9. Deprecation
	3.9.1. (RFP) MUST obtain approval of clients before API shut down
	3.9.2. (RFP) MUST collect external partner consent on deprecation time span
	3.9.3. (RFP) MUST reflect deprecation in API specifications
	3.9.4. (RFP) MUST monitor usage of deprecated API scheduled for sunset
	3.9.5. (RFP) SHOULD add Deprecation and Sunset header to responses
	3.9.6. (RFP) SHOULD add monitoring for Deprecation and Sunset header
	3.9.7. (RFP) MUST not start using deprecated APIs

	3.10. Common data types
	3.10.1. (RFP) MUST use the common money object
	3.10.1.1. Cons
	3.10.1.2. Pros
	3.10.1.3. Notes

	3.10.2. (RFP) MUST use common field names and semantics
	3.10.2.1. Generic fields
	3.10.2.2. Link relation fields
	3.10.2.3. Address fields

	3.11. API naming
	3.11.1. MUST/SHOULD use functional naming schema
	3.11.2. MUST follow naming convention for hostnames
	3.11.3. MUST use lowercase separate words with hyphens for path segments
	3.11.4. MUST use snake_case (never camelCase) for query parameters
	3.11.5. SHOULD prefer hyphenated-pascal-case for HTTP header fields
	3.11.6. MUST pluralize resource names
	3.11.7. SHOULD not use /api as base path
	3.11.8. MUST avoid trailing slashes
	3.11.9. MUST stick to conventional query parameters

	3.12. Resources
	3.12.1. MUST avoid actions — think about resources
	3.12.2. SHOULD model complete business processes
	3.12.3. SHOULD define useful resources
	3.12.4. MUST keep URLs verb-free
	3.12.5. MUST use domain-specific resource names
	3.12.6. MUST use URL-friendly resource identifiers
	3.12.7. MUST identify resources and sub-resources via path segments
	3.12.8. MAY expose compound keys as resource identifiers
	3.12.9. MAY consider using (non-)nested URLs
	3.12.10. SHOULD only use UUIDs if necessary
	3.12.11. SHOULD limit number of resource types
	3.12.12. SHOULD limit number of sub-resource levels

	3.13. Performance
	3.13.1. SHOULD reduce bandwidth needs and improve responsiveness
	3.13.2. SHOULD use gzip compression
	3.13.3. SHOULD support partial responses via filtering
	3.13.3.1. Unfiltered
	3.13.3.2. Filtered

	3.13.4. SHOULD allow optional embedding of sub-resources
	3.13.5. MUST document cachable GET, HEAD, and POST endpoints

	3.14. Hypermedia
	3.14.1. MUST use REST maturity level 2
	3.14.2. MAY use REST maturity level 3 - HATEOAS
	3.14.3. MUST use full, absolute URI
	3.14.4. MUST use common hypertext controls
	3.14.5. SHOULD use simple hypertext controls for pagination and self-references
	3.14.6. MUST not use link headers with JSON entities

	3.15. Common headers
	3.15.1. MUST use Content-* headers correctly
	3.15.2. MAY use standardized headers
	3.15.3. MAY use Content-Location header
	3.15.4. SHOULD use Location header instead of Content-Location header
	3.15.5. MAY consider to support Prefer header to handle processing preferences
	3.15.6. MAY consider to support ETag together with If-Match/If-None-Match header
	3.15.7. MAY consider to support Idempotency-Key header

	3.16. Proprietary headers
	3.16.1. MUST use only the specified proprietary Pon headers
	3.16.2. MUST propagate proprietary headers
	3.16.3. MUST support X-Flow-ID
	3.16.3.1. Data Definition
	3.16.3.2. Service Guidance

	3.17. API Operation
	3.17.1. MUST publish Open API specification
	3.17.2. SHOULD monitor API usage

	3.18. Events
	3.18.1. Events, event types, and categories
	3.18.2. MUST treat events as part of the service interface
	3.18.3. MUST make event schema available for review
	3.18.4. MUST ensure event schema conforms to Open API schema object
	3.18.5. MUST ensure that events are registered as event types
	3.18.6. MUST ensure that events conform to a well-known event category
	3.18.6.1. The general event category
	3.18.6.2. The data change event category
	3.18.6.3. Event metadata

	3.18.7. MUST ensure that events define useful business resources
	3.18.8. MUST ensure that events do not provide sensitive data
	3.18.9. MUST use the general event category to signal steps and arrival points in business processes
	3.18.10. MUST use data change events to signal mutations
	3.18.11. SHOULD provide means for explicit event ordering
	3.18.12. SHOULD use the hash partition strategy for data change events
	3.18.13. SHOULD ensure that data change events match the APIs resources
	3.18.14. MUST indicate ownership of event types
	3.18.15. MUST define event payloads compliant with overall API guidelines
	3.18.16. MUST maintain backwards compatibility for events
	3.18.17. SHOULD avoid additionalProperties in event type definitions
	3.18.18. MUST use unique event identifiers
	3.18.19. SHOULD design for idempotent out-of-order processing
	3.18.20. MUST follow naming convention for event type names
	3.18.21. MUST prepare event consumers for duplicate events

	Appendix A: Tooling
	3.A.1. API first integrations
	3.A.2. Support libraries

	Appendix B: Best practices
	3.B.1. Optimistic locking in RESTful APIs
	3.B.1.1. Introduction
	3.B.1.2. ETag with If-Match header
	3.B.1.3. ETags in result entities
	3.B.1.4. Version numbers
	3.B.1.5. Last-Modified / If-Unmodified-Since
	3.B.1.6. Conclusion

	4. Development guidelines
	4.1. General development guidelines
	4.1.1. Introduction
	4.1.2. Rules and definitions
	4.1.3. Definition: code quality
	4.1.4. Coding rule: logical structured code
	4.1.5. Coding rule: code is simple and concise
	4.1.6. Coding rule: do not repeat yourself (DRY)
	4.1.7. Coding rule: code and code changes are self-explanatory
	4.1.8. Coding rule: solution design steps are template-based
	4.1.9. Coding rule: code quality is known
	4.1.10. Coding rule: cyclomatic complexity is low

	4.2. File structure and naming
	4.2.1. (RFP) MUST add comment to file
	4.2.2. (RFP) MUST filenames are either CamelCase or snake_case

	4.3. Version control
	4.3.1. MUST use enterprise account
	4.3.2. MUST use review guidelines for version control
	4.3.2.1. Review guidelines

	4.4. Testing code
	4.4.1. MUST use automated linter based on approved style template
	4.4.2. MUST use automated tests based on approved testing template

	4.5. Monitoring & logging
	4.5.1. SHOULD use dedicated logging library and logging levels

	4.6. Development environment
	4.7. Development background
	4.8. Date and time handling
	4.8.1. (RFP) MUST use RFC 3339 for time and date encoding
	4.8.2. (RFP) MUST date time manipulation must be handled by a library
	4.8.3. SHOULD define time durations and intervals properties conform to RFC 3339

	Appendix C: Pon Standard Style
	4.C.1. MUST encapsulate body of if or else
	4.C.1.1. Example 1

	4.C.2. SHOULD order if statements by increased complexity
	4.C.2.1. Example 1

	4.C.3. MUST use special quotes only to reduce complexity
	4.C.3.1. Example 1
	4.C.3.2. Example 2
	4.C.3.3. References

	4.C.4. SHOULD never use tabs for indentation
	4.C.4.1. References

	4.C.5. MUST use predefined spacing for indentation
	4.C.5.1. References

	4.C.6. SHOULD check return types of non-void functions
	4.C.7. References
	4.C.8. SHOULD check the validity of parameters inside each function
	4.C.8.1. Example 1
	4.C.8.2. References

	4.C.9. MUST not have unused variables
	4.C.9.1. References

	4.C.10. SHOULD use < or > instead of <= or >=
	4.C.11. SHOULD use != instead of > or < when only a single value results in false
	4.C.11.1. Example 1

	Appendix D: Pon Standard Style - Go
	4.D.1. MUST for linting we use golangci-lint in our CI/CD system
	4.D.1.1. Example linter implementation in Git Actions

	4.D.2. SHOULD go Vet is used to check go code for correctness in the development process
	4.D.3. MUST go Vet is used to check go code for correctness in the build pipeline
	4.D.4. MUST use tabs for indentation in Go
	4.D.5. MUST use gofmt in the IDE and CI pipeline for automatic formatting
	4.D.6. {SHALL} every function is commented
	4.D.7. MUST single line multiple declarations are not used
	4.D.7.1. Example 1 Invalid declaration
	4.D.7.2. Example 2 Valid declaration

	4.D.8. MUST global variables are not used
	4.D.8.1. Exception

	4.D.9. MUST variables and constants have explicitly declared types
	4.D.9.1. Invalid declaration
	4.D.9.2. Valid declaration

	4.D.10. SHOULD use unitialized variables to check for zero-values
	4.D.10.1. Avoid
	4.D.10.2. Desired check

	4.D.11. MUST we do not try and catch exceptions. Errors are values and we handle errors
	4.D.12. MUST errors are handle only once.
	4.D.12.1. Don’t do
	4.D.12.2. Better
	4.D.12.3. We can also include the stacktrace in the logging

	4.D.13. SHOULD add context to errors when they are meaningless in the context of the (final) receiver.
	4.D.13.1. Passing through context of the error with fmt.Errorf()
	4.D.13.2. Better → Passing through context of the error with errors.Wrap() from the "github.com/pkg/errors" package

	4.D.14. {SHALL} Documenting comments are always written in the idiomatic syntax.
	4.D.14.1. Example multi line comments
	4.D.14.2. Do not use stars or other formatting in comments

	Appendix E: Pon Standard Style - Magento
	Appendix F: Pon Standard Style - WordPress

	5. Networking
	5.1. HTTP requests
	5.1.1. MUST use HTTP methods correctly
	5.1.1.1. GET
	5.1.1.2. GET with body
	5.1.1.3. PUT
	5.1.1.4. POST
	5.1.1.5. PATCH
	5.1.1.6. DELETE
	5.1.1.7. HEAD
	5.1.1.8. OPTIONS

	5.1.2. MUST fulfill common method properties
	5.1.3. SHOULD consider to design POST and PATCH idempotent
	5.1.4. SHOULD use secondary key for idempotent POST design
	5.1.5. MUST define collection format of header and query parameters
	5.1.6. SHOULD design simple query languages using query parameters
	5.1.7. SHOULD design complex query languages using JSON
	5.1.7.1. Example

	5.1.8. MUST document implicit filtering

	5.2. HTTP status codes and errors
	5.2.1. MUST specify success and error responses
	5.2.2. MUST use standard HTTP status codes
	5.2.2.1. Success codes
	5.2.2.2. Redirection codes
	5.2.2.3. Client side error codes
	5.2.2.4. Server side error codes:

	5.2.3. MUST use most specific HTTP status codes
	5.2.4. MUST use code 207 for batch or bulk requests
	5.2.5. MUST use code 429 with headers for rate limits
	5.2.6. MUST use problem JSON
	5.2.7. MUST not expose stack traces

	6. Data formats
	6.1. Data formats
	6.1.1. MUST use JSON to encode structured data
	6.1.2. MAY use non JSON media types for binary data or alternative content representations
	6.1.2.1. SHOULD encode embedded binary data in base64url

	6.1.3. SHOULD prefer standard media type name application/json
	6.1.4. SHOULD use standardized property formats
	6.1.5. MUST use standard date and time formats
	6.1.5.1. JSON payload
	6.1.5.2. HTTP headers

	6.1.6. SHOULD use standards for country, language and currency codes
	6.1.7. MUST define format for number and integer types

	6.2. JSON guidelines
	6.2.1. MUST property names must be ASCII snake_case (and never camelCase): ^[a-z_][a-z_0-9]*$
	6.2.2. MUST declare enum values using UPPER_SNAKE_CASE format
	6.2.3. SHOULD define maps using additionalProperties
	6.2.4. SHOULD pluralize array names
	6.2.5. MUST not use null for boolean properties
	6.2.6. MUST use same semantics for null and absent properties
	6.2.7. SHOULD not use null for empty arrays
	6.2.8. SHOULD represent enumerations as strings
	6.2.9. SHOULD name date/time properties with _at suffix
	6.2.10. SHOULD define dates properties compliant with RFC 3339

	7. Appendices
	Appendix G: Changelog
	7.G.1. Rule Changes

	7.1. Bibliography
	Generic
	Coding standards
	Open API specification
	Publications, specifications and standards
	Dissertations
	Books

